А. Степанов - Число и культура
- Название:Число и культура
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
А. Степанов - Число и культура краткое содержание
[ В 2002 г. на издание этой книги был получен грант Российского фонда фундаментальных исследований (РФФИ, проект 02-06-87085), и в 2004 она вышла в издательстве "Языки славянской культуры", Москва (в отредактированном виде, т.е. несколько отличном от варианта на сайте). ]
Число и культура - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Европейская математика ХVII – ХVIII вв. развивалась в союзе с механикой, астрономией, и уже до Ньютона, Лейбница была подготовлена почва для будущих дифференциального и интегрального исчислений. По выражению Лейбница, "после таких успехов науки недоставало только одного – нити Ариадны в лабиринте задач, именно аналитического исчисления по образцу алгебры". Представления об актуальных бесконечностях – будь то бесконечно малое или бесконечно большое – действительно внутренне противоречивы. Например, бесконечно малая величина – отличная от нуля и в то же время меньшая всякой конечной величины – по существу носит мистический характер, такова же и бесконечно большая. Поэтому им было противопоставлено понятие потенциальной бесконечности.
С историей вопроса читатель либо знаком, либо может познакомиться, например, по очерку Г.М.Фихтенгольца в "Основах математического анализа" [343]. Методы флюксий и квадратур Ньютона опираются то на потенциальные, то на актуальные бесконечности, и подвести последовательно строгий фундамент под новое исчисление Ньютону так и не удалось. Его великий континентальный соперник Лейбниц испытывал в вопросах обоснования не меньшие затруднения. Используя актуальные бесконечности, критикам он отвечал, что "бесконечно малые" величины могут быть заменены "несравнимо малыми", каковыми являются, например, пылинка по отношению к Земле или Земля по отношению к небесному своду. Возможный путь решения Лейбниц иногда видел в том, чтобы считать бесконечно малые "фиктивными", "идеальными" понятиями, и даже прибегал к помощи пасующей прагматической эвристики: "Я высоко ценю старательность тех, которые стремятся все доказать, вплоть до первоначальных положений, и сам нередко прилагаю к этому старания; однако я не советовал бы чрезмерной тщательностью ставить преграды искусству открытия или под этим предлогом отбрасывать наилучшие открытия и самим себя лишать их плодов"" (цит. по: [343, с. 432]).
В таких вещах таятся глубокие логические проблемы, "проклятые вопросы" мышления, и дело, конечно, не в том, что Ньютон и Лейбниц будто бы с ними "не справились" – заповедная дверь, или ящик Пандоры, вновь были открыты: еще Зенон из Элеи обнаружил сопутствующие формулы парадокса. В ХIХ в. Огюстен Луи Коши (1789 – 1857), опираясь на декартово понятие переменной величины и на понятие предела, вроде, подвел, наконец, платформу под матанализ и изгнал из него даже скрытую мистику. Матанализ давно и успешно применялся в механике, оптике, астрономии, стали привычными неалгебраические, трансцендентные кривые и уравнения. Практические достижения, подпитываемые здоровым мировоззренческим позитивизмом, на первый взгляд, не давали поводов для беспокойства. Оставалось "совсем немного" – заполнить брешь в строгом обосновании действительного (вещественного) числа, в установлении непрерывности области таких чисел. Этот вопрос частично затрагивался в разделе 1.3.
Георг Кантор (1845 – 1918) разрабатывает основы теории множеств, оперирует актуальными бесконечностями разных сортов (счетными и несчетными). Формулируется понятие трансцендентной величины (уже не только кривой или уравнения). Проблема континуума, кажется, дрогнула под напором величайших умов. Но вскоре в теории множеств обнаруживаются неразрешимые противоречия – так называемые парадоксы теории множеств, которым уделили значительное внимание, скажем, Б.Рассел, К.Гедель. "Недоказуемость" или даже "доказуемость недоказуемости" вновь дали знать о себе.
Человек издавна чувствовал вибрирующий нерв, связанный с представлением бесконечности, – еще до рождения строгой рациональности. Это нашло отражение и в распространенном у древних народов мифологическом образе хаоса .
Почему хаос и бесконечность во многом синонимичны? – По-видимому, из-за "неорганизованности" бесконечности, из-за ее "всеохватности". В популярных брошюрах нередко приводится наглядный пример: если посадить обезьяну за пишущую машинку, то она, достаточно долго долбя по клавишам, в конечном счете наберет все необходимое, чтобы выбрать из него, скажем, "Войну и мир" Л.Толстого. А это еще не бесконечный хаос. Если же он подлинно бесконечен, он содержит в себе все, что только можно вообразить, – отсюда представление о порождающем хаосе .
Древние греки считали: "Вначале существовал лишь вечный, безграничный, темный Хаос. В нем заключался источник жизни мира. Все возникло из безграничного Хаоса – весь мир и бессмертные боги" [170, c. 17]. Такого мнения придерживалось и большинство греческих философов, и не только греческих: китаец Ван Чун (27 – ок. 104 гг.) утверждал, что мир возник в результате разделения хаоса. Хаос – это состояние, когда "ци" еще не разделилось; после разделения чистые частицы образовали небо, мутные – землю [307:I, с. 77]. К мысли о креативной функции хаоса склоняется и современная синергетика.
Какое отношение вызывал к себе хаос? – Его безликость, подавляющая непостижимость таят в себе источник не только рождения, но и катастрофической гибели. Гегель заявляет о присущем разумным грекам страхе перед бесконечностью; платоновско-аристотелевская картина замкнутого космоса – выражение ограниченного мироощущения "грека вообще". С ним, правда, полемизирует Я.Э.Голосовкер: "Миф, и особенно эллинский миф, есть запечатленное в образах познание мира во всем великолепии, ужасе и двусмыслии его тайн ‹…› Напрасно иные из современных мыслителей полагают, что замкнутый космос античного человека исключает идеи бесконечности и бесконечной глубины этих тайн. Бесконечность ужасала богов Олимпа уже у Гесиода. Те страшные переплетенные корни земли и всесущего, пребывающие в вечной бездне Вихрей под Тартаром, вызывали у них трепет и отвращение. Сознание эллина с содроганием отворачивается от них. Но оно знало об этой бездне великой бесконечности, как знало и о бездне бесконечно малого, об анаксимандровом "апейрон", ‹…› в этих якобы наивных мифах скрыто предузнавание "законов" мира и грядущих открытий науки" [102, c. 14-15]. Попытки выйти за границы, отмеченные столбиками человеческого рассудка, всегда чреваты угрозами; предстающее – как всякое необжитое и "чужое", как темные углы в детстве – вызывает мистическую боязнь. Так некогда Маной решился заглянуть за край земли и расплатился безумием.
В христианском мировоззрении атрибут всесторонней бесконечности присваивался исключительно Богу – кто или что в состоянии положить Ему предел? Для преодоления дегуманизированности Бог был представлен как Личность, но и это не избавляло Его от непостижимости, нуминозности и иррациональной же безграничной любви. Напротив, мир тварный автоматически конечен и благодаря этому подведомственен инструментам мысли, воли и чувств. По мере секуляризации идея бесконечности вторглась в научный обиход – логически компактными, обозримыми, но при этом неограниченными по протяженности были признаны, в частности, пространство и время, вместилища всего существующего и происходящего. Элиминация Бога, или "гипотезы Бога", из науки сопровождалась заимствованием дискурсивных черт, которые прежде адресовались только Ему. По известному замечанию, идея Бога вытеснялась идеей бесконечного пространства. В постклассический период, однако, вместе с включением "наблюдателя" и гравитации в общей теории относительности, вселенная вновь обретает конечность во времени и пространстве, и бесконечности либо сохранились исключительно в укрощенно-латентном виде (из-за континуальности), либо, если появлялись, стали только мешать (проблема сингулярности). Иногда в физике рассматриваются объекты с бесконечным числом степеней свободы (в известном смысле бесконечномерные), но здесь бесконечность скорее формальная, ибо обязана тому, что отсутствуют "выделенные" направления движения. В наиболее строгих же и логически самодостаточных концептах явно превалирует финитизм – как, скажем, в теории доказательств Д.Гильберта, исключающей обращение к абстракциям бесконечности, требующей содержательности рассуждений, их соотносительности с конкретными знаковыми комплексами и оттого лишенных неясностей и сомнений.
Читать дальшеИнтервал:
Закладка: