Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления

Тут можно читать онлайн Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Изд-во НЦ ЭНАС, год 2003. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Дмитрий Гусев - Краткий курс логики: Искусство правильного мышления краткое содержание

Краткий курс логики: Искусство правильного мышления - описание и краткое содержание, автор Дмитрий Гусев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга представляет собой краткое изложение одной из древнейших наук – логики Аристотеля. Её завершают тестовые задания, сборник занимательных логических задач и краткий словарь терминов. Автор – кандидат философских наук, доцент Московского педагогического государственного университета – с неизменным успехом использует материалы книги в многолетней преподавательской практике.

Книга адресована учащимся старших классов общеобразовательных учреждений (школ с углублённым изучением предметов социально-гуманитарного цикла, гимназий и лицеев). Она сможет помочь студентам высших учебных заведений сделать изучение логики интересным и увлекательным. Книга будет полезна всем интересующимся логикой и другими гуманитарными науками.

Краткий курс логики: Искусство правильного мышления - читать онлайн бесплатно ознакомительный отрывок

Краткий курс логики: Искусство правильного мышления - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Дмитрий Гусев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Частный объём субъекта и отрицательная связка суждений вида O обусловливают то, что в них субъект и предикат, так же как и в суждениях вида I , могут быть только в отношениях пересечения и подчинения. Читатель без труда сможет подобрать примеры суждений вида O , в которых субъект и предикат находятся в этих отношениях.

Проверьте себя:

1. Что такое простое суждение?

2. На каком основании простые суждения подразделяются на виды? Почему они делятся именно на четыре вида?

3. Охарактеризуйте все виды простых суждений: название, структура, условное обозначение. Придумайте пример для каждого из них. К каким суждениям – общим или частным – относятся суждения с единичным объёмом субъекта?

4. Откуда взяты буквы для обозначения видов простых суждений?

5. В каких отношениях могут быть субъект и предикат в каждом из видов простых суждений? Подумайте, почему в суждениях вида A субъект и предикат не могут пересекаться или быть несовместимыми? Почему в суждениях вида I субъект и предикат не могут находиться в отношениях равнозначности или несовместимости? Почему в суждениях вида E субъект и предикат не могут быть равнозначными, пересекающимися или подчинёнными? Почему в суждениях вида O субъект и предикат не могут находиться в отношении равнозначности или несовместимости? Изобразите кругами Эйлера возможные отношения между субъектом и предикатом во всех видах простых суждений.

2.3. Распределённые и нераспределённые термины

Терминами сужденияназываются его субъект и предикат.

Термин считается распределённым(развёрнутым, исчерпанным, взятым в полном объёме), если в суждении речь идёт обо всех объектах, входящих в объём этого термина. Распределённый термин обозначается знаком «+», а на схемах Эйлера изображается полным кругом (кругом, который не содержит в себе другого круга и не пересекается с другим кругом) (рис. 22).

Термин считается нераспределённымнеразвёрнутым неисчерпанным взятым не в - фото 25

Термин считается нераспределённым(неразвёрнутым, неисчерпанным, взятым не в полном объёме), если в суждении речь идёт не обо всех объектах, входящих в объём этого термина. Нераспределённый термин обозначается знаком «–», а на схемах Эйлера изображается неполным кругом (кругом, который содержит в себе другой круг (рис. 23, a ) или пересекается с другим кругом (рис. 23, б ).

Например в суждении Все акулы S являются хищниками Р речь идёт обо - фото 26

Например, в суждении: « Все акулы (S) являются хищниками (Р) », – речь идёт обо всех акулах, значит, субъект этого суждения распределён.

Однако в данном суждении речь идёт не обо всех хищниках, а только о части хищников (именно о тех, которые являются акулами), следовательно, предикат указанного суждения нераспределён. Изобразив отношения между субъектом и предикатом (которые находятся в отношении подчинения) рассмотренного суждения схемами Эйлера, увидим, что распределённому термину (субъекту « акулы ») соответствует полный круг, а нераспределённому (предикату « хищники ») – неполный (попадающий в него круг субъекта как бы вырезает из него какую-то часть):

Распределённость терминов в простых суждениях может быть различной в зависимости от вида суждения и характера отношений между его субъектом и предикатом. В табл. 4 представлены все случаи распределённости терминов в простых суждениях:

Здесь рассмотрены все четыре вида простых суждений и все возможные случаи - фото 27 Здесь рассмотрены все четыре вида простых суждений и все возможные случаи - фото 28

Здесь рассмотрены все четыре вида простых суждений и все возможные случаи отношений между субъектом и предикатом в них (см. раздел 2. 2). Обратите внимание на суждения вида O , в котором субъект и предикат находятся в отношении пересечения. Несмотря на пересекающиеся круги на схеме Эйлера, субъект данного суждения нераспределён, а предикат распределён. Почему так получается? Выше мы говорили о том, что пересекающиеся на схеме круги Эйлера обозначают нераспределённые термины. Штриховкой показана та часть субъекта, о которой идёт речь в суждении (в данном случае – о школьниках, которые спортсменами не являются), в силу чего круг, обозначающий на схеме Эйлера предикат, остался полным (круг, обозначающий субъект, не отрезает от него какую-то часть, как это происходит в суждении вида I , где субъект и предикат находятся в отношении пересечения).

Итак, мы видим, что субъект всегда распределён в суждениях вида A и E и всегда не распределён в суждениях вида I и O , а предикат всегда распределён в суждениях вида E и O , но в суждениях вида A и I он может быть как распределённым, так и нераспределённым в зависимости от характера отношений между ним и субъектом в этих суждениях.

Проще всего устанавливать распределённость терминов в простых суждениях с помощью схем Эйлера (все случаи распределённости из таблицы запоминать совсем не обязательно). Достаточно уметь определять вид отношений между субъектом и предикатом в предложенном суждении и изображать их круговыми схемами. Далее ещё проще – полный круг, как уже говорилось, соответствует распределённому термину, а неполный – нераспределённому. Например, требуется установить распределённость терминов в суждении: « Некоторые русские писатели – это всемирно известные люди ». Сначала найдём в этом суждении субъект и предикат: « русские писатели » – субъект, « всемирно известные люди » – предикат. Теперь установим, в каком они отношении. Русский писатель может как быть, так и не быть всемирно известным человеком, и всемирно известный человек может как быть, так и не быть русским писателем, следовательно, субъект и предикат указанного суждения находятся в отношении пересечения. Изобразим это отношение на схеме Эйлера, заштриховав ту часть, о которой идёт речь в суждении (рис. 25):

И субъект и предикат изображаются неполными кругами у каждого из них как бы - фото 29

И субъект, и предикат изображаются неполными кругами (у каждого из них как бы отрезана какая-то часть), следовательно, оба термина предложенного суждения нераспределены ( S –, P –).

Рассмотрим ещё один пример. Надо установить распределённость терминов в суждении: « Некоторые люди – это спортсмены ». Найдя в этом суждении субъект и предикат: « люди » – субъект, « спортсмены » – предикат, и установив отношение между ними – подчинение, изобразим его на схеме Эйлера, заштриховав ту часть, о которой идёт речь в суждении (рис. 26):

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Дмитрий Гусев читать все книги автора по порядку

Дмитрий Гусев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Краткий курс логики: Искусство правильного мышления отзывы


Отзывы читателей о книге Краткий курс логики: Искусство правильного мышления, автор: Дмитрий Гусев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x