Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее

Тут можно читать онлайн Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Юнацтва, год 1991. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее краткое содержание

Открытие Вселенной - прошлое, настоящее, будущее - описание и краткое содержание, автор Александр Потупа, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

На основе обширных данных из астрономии, астрологии, географии, физики, математики, химии, биологии, истории, археологии и других наук автор рассказывает о строении Вселенной, истории человечества, о планетах Солнечной системы и Галактике, о звездах и их эволюции, о возможностях существования внеземных цивилизаций, о перспективах космических исследований, об идее контакта с инопланетянами.

Открытие Вселенной - прошлое, настоящее, будущее - читать онлайн бесплатно полную версию (весь текст целиком)

Открытие Вселенной - прошлое, настоящее, будущее - читать книгу онлайн бесплатно, автор Александр Потупа
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В обычном евклидовом пространстве свободная частица всегда движется по прямой с постоянной скоростью или покоится. В случае более сложной геометрии свободному движению (или, как говорят, движению по геодезической) могут соответствовать очень сложные траектории. Тяготеющий центр может искривлять пространство, обеспечивая, например, эллиптическое движение частицы, и при достаточно больших расстояниях (r » 2GM/c 2) и малых скоростях (v « c) картина будет соответствовать движению планеты в поле ньютоновского силового центра.

Эйнштейновская теория гравитации (часто называемая общей теорией относительности) получила хорошие экспериментальные подтверждения и составила основу современной космологии и релятивистской астрофизики. Но она соответствует усредненному описанию вещества, и ее экстраполяции на уровень квантовомеханических систем отнюдь не проста. К сожалению, нашему эксперименту пока не доступны объекты, которые могли бы сыграть роль мостика между классической и квантовой гравитацией — нечто вроде атома водорода в электродинамике. Тем более трудно пока обсуждать микроскопическую модель гравитационного взаимодействия — будет ли она соответствовать современному квантовополевому идеалу (обмен гравитонами и т. п.) или потребует чего-то необычного.

На фоне всех этих развитых теорий, имеющих широкий круг экспериментальных подтверждений, существует явление, которое, по-видимому, должно объясняться особым типом сверхслабого взаимодействия. Речь идет о необычном распаде так называемого долгоживущего нейтрального K-мезона на пару K-мезона на пару π-мезонов (K L 0" π+π- или K L 0" π 0π 0). Это явление обнаруженное в 1964 году, связано с нарушением СР-инвариантности, которая, как казалось ранее, должна выполняться во всех моделях [210]. Регистрируемый эффект находится на уровне не более одной тысячной от обычных эффектов слабых взаимодействий, откуда и берется название гипотетических новых сил. Пока исследованы они очень ограниченно, экспериментально не обнаружено ни одного случая их проявления в процессах, отличных от K L 0-распадов. Однако и этого достаточно, чтобы оценить исключительную важность открытия. Из-за нарушения СР-четности K L 0с несколько большей вероятностью распадается с вылетом позитрона (K L 0" e +ν eπ -, чем электрона (K L 0" e -ν eπ +), и такая же ситуация имеет место в распадах с вылетом μ ±. Это фиксирует абсолютную разницу между частицами и античастицами — античастицы уже не выступают зеркальными двойниками частиц. Возможно, проблема сверхслабых взаимодействий тесно связана с загадкой зарядовой асимметрии наблюдаемого участка Вселенной, где вещество резко преобладает над антивеществом.

В физике частиц и их взаимодействий очень важную роль играет вакуум элементарных частиц (или физический вакуум, по-латыни vacuum — пустота). Это особое состояние материи, в котором отсутствуют реальные частицы и энергия минимальна. Однако с точки зрения квантовой теории, в вакууме непрерывно рождаются и очень быстро гибнут виртуальные частицы — в соответствии с соотношениями неопределенностей. В этом смысле физический вакуум обладает сложной структурой и оказывает наблюдаемое влияние на процессы взаимодействия реальных элементарных частиц. Внешние поля (в частности, гравитационное) могут сообщить вакууму достаточную энергию, и в результате начнется процесс рождения реальных частиц, например, электрон-позитронных пар. Такого типа процессы должны играть особенно большую роль на ранних космологических стадиях и в окрестностях черных дыр.

3. Надежды

Есть круг проблем, к решению которых физика элементарных частиц подошла вплотную, и ожидаемые результаты должны по-новому осветить принципиальные моменты современной картины строения и эволюции Вселенной.

Многие надежды связываются с недавними достижениями в нейтринных исследованиях. Окончательное подтверждение ненулевой массы покоя электронного нейтрино и измерение масс его μ- и τ-аналогов скорее всего приведет к тому, что Вселенная станет для нас преимущественно нейтринным объектом — самые трудноуловимые частицы дадут основной вклад в среднюю плотность материи, а следовательно, и в распределении гравитационных полей в самых больших масштабах. Массивные нейтрино уже сейчас решительно вмешиваются в модели формирования крупных структур — галактик и галактических скоплений [211].

Массивные реликтовые нейтрино с очень малыми скоростями (v ~ 300 м/с) и большой дебройлевской длиной волны (λ ν~ ћ/m νc ~10 -2см) должны оказывать заметное силовое воздействие на пористые тела с размером пор ~ λ ν. Этот так называемый нейтринный ветер может оказаться крайне серьезным фактором в картине движения космической пыли и более крупных тел.

Многого можно ожидать и от исследования сверхгорячих нейтрино. При современных энергиях нейтринных пучков сечение их взаимодействия с нуклонами линейно растет с энергией (до 250 ГэВ). В соответствии с теорией электрослабого взаимодействия, этот рост должен заметно замедлиться в районе E ν~ 3000 ГэВ.

На той или иной стадии реализации находятся и другие проекты, работы на ускорителях, которые позволят экспериментально в деталях проверить электрослабую теорию, и поискать новые экзотические частицы, лежащие в рамках ее предсказаний (так называемые хиггсовские бозоны) и не связанные с ней (например, новые резонансы, соответствующие tt-кварковой паре, подобно тому, как cc соответствует J/? — мезону, а J/ψ -мезону, а bb — ¡-мезону).

Разумеется, при всей своей важности поиск новых частиц не составляет единственной цели. Очень большие надежды возлагаются на прояснение картины сильных взаимодействий. Разгоняя протоны, мы фактически разгоняем кварковые пучки (но, конечно, на каждый кварк приходится лишь какая-то доля энергии, скажем, 1/3 или того меньше). Можно полагать, что характер межкварковых взаимодействий с ростом энергии станет понятней. Важная задача — выявить закономерности синтеза адронов из горячего кварк-глюонного вещества, образующегося в области взаимодействия.

Астрофизические и космологические последствия установления этой картины трудно переоценить. Одна только возможность открытия — пусть крайне гипотетичная — каких-то неадронных форм относительно стабильной организации кварк-глюонного вещества способна воодушевить на самые смелые экспериментальные проекты.

Но в программах работ стоят и стратегические задачи дальнего прицела. В настоящее время многие физики верят в вариант так называемого Великого Объединения — теорию, которая описала бы кварки, лептоны и промежуточные бозонные поля единой схемой некоторого электроядерного взаимодействия. Было бы приятно выяснить, что на расстояниях ~ 10–29 см лептоны и кварки ведут себя как одно семейство. Неплохие модели такого объединения уже заготовлены, но масштаб его соответствует фантастически высоким энергиям 10 14–10 15ГэВ (~10 -5÷ 10 -4Е Р!). Именно такого порядка массы предсказывают модели великого объединения для промежуточных Х-бозонов, за счет которых кварки могут трансформироваться в лептоны и наоборот.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Потупа читать все книги автора по порядку

Александр Потупа - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Открытие Вселенной - прошлое, настоящее, будущее отзывы


Отзывы читателей о книге Открытие Вселенной - прошлое, настоящее, будущее, автор: Александр Потупа. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x