Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее
- Название:Открытие Вселенной - прошлое, настоящее, будущее
- Автор:
- Жанр:
- Издательство:Юнацтва
- Год:1991
- Город:Минск
- ISBN:5-7880-0325-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее краткое содержание
На основе обширных данных из астрономии, астрологии, географии, физики, математики, химии, биологии, истории, археологии и других наук автор рассказывает о строении Вселенной, истории человечества, о планетах Солнечной системы и Галактике, о звездах и их эволюции, о возможностях существования внеземных цивилизаций, о перспективах космических исследований, об идее контакта с инопланетянами.
Открытие Вселенной - прошлое, настоящее, будущее - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
128
Размер такого атома определяется величиной r B= ћ2/ e2me ≈ 10 -8см, именуемой Боровским радиусом, е — электрический заряд электрона и протона, me — масса электрона. Размер гравитационного атома дается аналогичной формулой, где е 2заменяется ньютоновским выражением Gm 1m 2.
129
Все дело именно в массивности частиц, из которых состоит гипотетическая микрозвезда! Обычно полагают, что в очень ранней и горячей Вселенной не могут образовываться никакие многочастичные конденсации, кроме первичных черных дыр. Представление основано на том простом факте, что ультрарелятивистские частицы горячего бульона непременно убегут из любой конденсации, чей радиус превышает Rg. Это так, если предполагать, что вплоть до какого-то момента Вселенная состоит из одних только ультрарелятивистских частиц, чья кинетическая энергия много больше энергии покоя (фактически: кТ ‡ mс 2), т. е. начальная Вселенная является «чисто горячей». На самом деле даже в очень ранние моменты во Вселенной может присутствовать «холодная компонента» — небольшая доля достаточно массивных и потому относительно медленных частиц. Действительно, в момент t, когда температура Вселенной Т ~ √ t P/t , частицы с массой покоя m ~ kT/c 2~ m Р√ t P/t перестают быть ультрарелятивистскими — их кинетические энергии того же порядка, что и энергия покоя mc 2. В пределах горизонта R ~ ct они могут конденсироваться в микрозвезду с массой М ~ ½R 3~ ½ P(t P/t) 2(ct) 3~ m Р(t P/t) ~ m Р 3/m 2. Такая микрозвезда представляет собой возмущение в среднем однородного фона плотности материи. В частности, при t ~ 10 –23 с гипотетические супербарионы с m ~ 10 –15 г могут формировать микрозвезды с М ~ 10 15 г. Тепловые скорости супербарионов должны стать заметно меньше с, и для достаточно компактной микрозвезды — меньше критической скорости убегания. Разумеется, обрастать атмосферой из более легких частиц (и, например, формировать гравитационные атомы) такая микрозвезда сможет лишь много позже — при достаточном падении общей температуры.
Было бы любопытно выяснить — не является ли «холодная компонента» источником самых ранних возмущений плотности материи, начиная, быть может, с t ~ t P, когда способны формироваться микрозвезды планкеонного масштаба. Проблема «холодной компоненты», разумеется, будет решаться экспериментально — во-первых, необходимо искать частицы очень больших масс (на 10 и более порядков тяжелее протона), во-вторых, непосредственно искать реликты типа микрозвезд по их прямым и косвенным проявлениям, имея в виду, что относительные концентрации этих объектов могут быть крайне малы.
Один из примеров образования реликтовых конденсаций за счет описанного механизма уже известен, хотя он и относится к сравнительно холодным эпохам. Речь идет о формировании облаков из реликтовых нейтрино с ненулевой массой покоя при t ~ t P(m Р/mν) 2~ 10 10 с ~ 300 лет. В эту эпоху (Т~10 5К) нейтрино с mν ~ 30 эВ уже не ультрарелятивистские. Масса нейтринного облака М ~ m Р 3/ mν 2~ 10 15 г, а начальный радиус R ~ l P(m Р/ mν) 2~ 100 пс. Такая гигантская конденсация, как мы увидим в гл. 9, Должна играть определяющую роль в формировании самых крупных структурных единиц Вселенной — сверхскоплений галактик.
130
По-английски бутстрэп — шнуровка обуви (bootstrap)
131
Для численной оценки лучше всего подходит? — мезон, но взять протон (m p/m π~ 7) — тоже не ошибка. Ведь такую величину, как возраст Вселенной (~ 1/H) или ее радиус, мы оцениваем очень грубо — по порядку величины.
132
Дискуссия о связи идей бутстрэпа и антропологического (или, как иногда говорят, антропного) принципа увела бы нас слишком далеко. При желании можно считать, что это независимые подходы. Всеобщий бутстрэп предполагает отсутствие каких-либо фундаментальных элементов Вселенной все элементы равно важны в своей взаимообусловленности. Антропологический принцип подчеркивает, что вся информация об этих элементах фиксируется не вообще в космическом пространстве, а наблюдателем и поневоле имеет антропоцентрическую форму.
133
В такой общей формулировке принцип следовало бы, строго говоря, назвать антропогенным. Обращаясь к историческому материалу (в том числе изложенному в 1-й части книги), нетрудно убедиться, что антропогенный элемент присутствует во всех сколь-нибудь развитых космологических схемах древности. Древние ничего не знали о минимальном наборе констант, зажатых узким коридором допустимых значений, но неизменно сводили условия творения Вселенной к ситуации, где возникновение человека выглядит естественно в рамках их представлений.
134
Фактически для электронных нейтрино Вселенная становится прозрачна за первую треть секунды после Первовзрыва.
135
Масса этих обособленных конденсаций может быть достаточно велика, и тогда они превращаются в отдельные звезды. Вероятно, на этом пути и получаются тесные двойные системы.
136
По современной классификации, под звездой, как правило, понимают компактное и оптически непрозрачное тело, обладающее собственной светимостью L ~ (10 -2?10 4)L €и способное уравновесить действие гравитации за счет внутренних источников энергии. С этой точки зрения протозвезды, остывшие белые карлики (их иногда называют черными карликами), нейтронные звезды и черные дыры нельзя считать звездами. Разумеется, такое разделение (как и всякая классификация, основанная на разрезании эволюционных цепочек) весьма условно.
137
Объекты такого рода наблюдаются, например, объект L 930-8 °C с массой М? 2,82.10 33 г, радиусом R? 200 км и плотностью (? 8,5.10 7 г/см.
138
Плутон заметно отличается от других планет. В результате наблюдений американского астронома Д. Кристи выяснилось, что, скорее всего, это своеобразная двойная планета — на расстоянии порядка 17 тыс. км от Плутона есть спутник Харон, масса которого всего в 16 раз меньше. Система Земля Луна фактически тоже представляет собой двойную планету с отношением масс 81, хотя и менее тесную.
139
Недавно появились сообщения об обнаружении долгожданной десятой планеты.
140
Результаты, полученные с помощью инфракрасного телескопа на нидерландском спутнике IRAS, говорят о том, что вокруг Веги (звезды, которая примерно в 5 раз моложе Солнца и расположена в 8,5 пс от нас) существует облако довольно крупных твердых частиц (размер облака около 170 а.е.). Возможно, это первое прямое наблюдение протопланетного облака (начальной фазы планетной космогонии).
141
Современные данные показывают, что так называемое жидкое ядро Земли заключено в сферическом слое радиусом около 3,5 тыс. км, а внутри него находится твердое (или полурасплавленное) железоникелевое ядро радиусом 1250 км. Над жидким ядром располагается трехслойная мантия, выше — кора.
Читать дальшеИнтервал:
Закладка: