Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее

Тут можно читать онлайн Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Юнацтва, год 1991. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее краткое содержание

Открытие Вселенной - прошлое, настоящее, будущее - описание и краткое содержание, автор Александр Потупа, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

На основе обширных данных из астрономии, астрологии, географии, физики, математики, химии, биологии, истории, археологии и других наук автор рассказывает о строении Вселенной, истории человечества, о планетах Солнечной системы и Галактике, о звездах и их эволюции, о возможностях существования внеземных цивилизаций, о перспективах космических исследований, об идее контакта с инопланетянами.

Открытие Вселенной - прошлое, настоящее, будущее - читать онлайн бесплатно полную версию (весь текст целиком)

Открытие Вселенной - прошлое, настоящее, будущее - читать книгу онлайн бесплатно, автор Александр Потупа
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Заключение таково, что вся наблюдаемая часть Вселенной участвует в эволюционном процессе на всех уровнях, и никаких выводов о ее принадлежности какой-то более крупной и в целом стационарной системе пока сделать нельзя.

Итак, проблему Сингулярности не удалось обойти ни более реалистическим описанием вещества, ни нарушением или напротив обобщением Космологического Принципа. Более того, обширные исследования убедили в неизбежности появления Сингулярности в классической теории тяготения. Как мы видели, все попытки борьбы с ней сопровождались по сути дела введением новых физических законов — будь то совершенно необычные свойства вещества (аномально большая вязкость или самопроизвольное рождение) или пространства (анизотропия), или особый характер гравитационного взаимодействия (λ — член). Это наталкивает на вполне реалистическую идею, что, ограничиваясь известной физикой, не конкретизируя механизм рождения «из ничего» (целой Вселенной или отдельного протона) проблему Сингулярности решить вообще не удастся. Видимо, в непосредственной близости к Сингулярности классическая теория гравитации становится принципиально неприменимой. И если говорить всю правду, теоретики знают об этом давно, практически с тех пор, когда стала развиваться релятивистская космология, а в некотором смысле и с еще более ранних времен.

Сингулярность и ее окрестности — квантовые проблемы

То, что квантовые закономерности могут играть важную роль в космологии, отнюдь не тривиальное представление. Когда говорят о Вселенной в целом, имеют в виду очень большие масштабы, в которых галактики выглядят, как пылинки. В таких масштабах обычно используется классическое описание.

Однако в космологии с Сингулярностью неизбежна такая эпоха, когда квантовые эффекты вовсе не малы: ими нельзя пренебречь ни в описании вещества, ни даже в интерпретации самого пространства-времени. Рассказ об этом придется начать немного издалека.

В физике известно множество постоянных, с помощью которых описывается поведение материи в самых различных процессах. Три из них явно выделены это скорость света в вакууме с, константа Планка ћ и гравитационная постоянная G [112] Значения этих и многих других величин приведены в таблице (Приложение 1). .

Скорость света имеет самую прозрачную трактовку. Это просто предельная скорость распространения для любых процессов, несущих информацию.

С важнейшей константой квантовой теории ћ дело обстоит сложнее. В самых ранних вариантах квантовой механики она характеризовала минимальное действие — элементарную ячейку фазового пространства, занимаемого частицей. Фазовое пространство — это очень удобное в классической механике объединение координат и импульсов в некое единое многообразие. Однако развитие квантовой механики показало, что частица вообще не может характеризоваться одновременно измеренными координатой и импульсом, между погрешностями в их величинах всегда есть неустранимая корреляция — так называемое соотношение неопределенностей Δx. Δp Á ћ. Из-за этого описание в терминах фазового пространства оказывается лишь крайне приближенным. Кроме того, константа Планка с самого своего появления несла очень важную нагрузку, определяя, условно говоря, связь между корпускулярными и волновыми свойствами материи (например, через известные эйнштейновские выражения E = ћω, p = ћ/λ связывающие энергию и частоту, импульс и длину волны для фотона), а также определяла квант момента количества движения.

Похоже обстоит дело и с гравитационной постоянной. В ньютоновской картине все выглядело довольно просто: G считалась универсальной силовой характеристикой тяготения в соответствующем законе. В эйнштейновской картине ситуация изменилась, строго говоря, общая теория относительности описывает свободное движение вещества в искривленном пространстве-времени, а представление о силовом взаимодействии возникает лишь в Ньютоновом приближении (при с " ∞). Поэтому G входит в уравнение Эйнштейна просто через коэффициент, связывающий свойства пространства-времени с распределением материи R ik-1/2Rg ik= - 8πG/c 4T ik), причем в комбинации 8?G/c4, называемой иногда эйнштейновской постоянной. Хотя общая теория относительности и усложнила интерпретацию G, но зато вывела ее в число самых фундаментальных констант природы (на одном уровне с ћ и с). Действительно, с точки зрения уравнений Эйнштейна G выглядит не просто как характеристика одного из взаимодействий, а как константа, определяющая влияние всех форм материи на структуру пространства-времени. Еще в 1899 году один из создателей квантовой теории Макс Планк (1858–1947) обратил внимание на следующее обстоятельство: из с, ћ и G можно выстроить фундаментальные постоянные с очень ясной физической размерностью: длины (l P= √G ћ /c 3»1,6 .10 -33 см), времени (t P = √G ћ /c5 » 5,4.10 –44 с) и массы (m Р = √ ћ c /G » 2,2.10 -5 г) [113] В Приложении 1 эти величины приводятся в более точном виде (везде 2G вместо G), но, разумеется, это изменение несущественно для качественных оценок. . С их помощью все физические уравнения нетрудно привести к абсолютному масштабу, то есть сделать безразмерными. Другое дело, что единицы этого масштаба не слишком удобны в привычных для нас теориях реальный эксперимент в физике элементарных частиц и в астрофизике очень еще далек от планковских единиц. Скажем, взаимодействия элементарных частиц только сейчас начинают исследоваться на расстояниях порядка 10 –16–10 –17 см, и ясно, что до планковской области длин предстоит еще долгий и нелегкий путь [114] Прием перехода к абсолютным масштабам очень часто используется в различных областях. Например, в релятивистской физике удобно иметь дело со скоростями, выраженными в долях с. Но когда речь идет об обычных движениях, скажем, автомобиля по дороге, это попросту неудобно. Для того же автомобиля куда проще применять единицы типа км/час или м/с, иначе мы рискуем увязнуть в дробях (если vавт. = 100 км/час, то v/с? 9,26.10 -8 ). .

Однако в космологии весьма правдоподобна гипотеза о том, что планковская область наверняка является барьером, за которым представления о пространстве-времени и о поведении вещества должны меняться самым радикальным образом. В связи с этим похоже, что с физической точки зрения Сингулярность станет псевдопроблемой, которая в последовательной квантовой теории гравитации отпадет как бы сама собой.

Такая смелая проекция наших очень поверхностных знаний о планковской области основана вот на чем.

Переходя от более или менее понятной эпохи адронного синтеза к все более ранним временам, мы попадаем в неопределенное положение. Можно, разумеется, верить, что ничего особенного в эти более ранние эпохи не происходит — вся материя остается очень концентрированным и горячим кварк-лептон-фотонным газом. Можно ожидать, что в какие-то моменты важную роль сыграют неоткрытые пока элементарные частицы. Иными словами, от вещества, сжатого до фантастически высоких плотностей, можно ожидать некоторых сюрпризов. Не исключено, что в достаточно ранние моменты кварки и лептоны окажутся далеко не столь элементарными, как они сейчас выглядят на ускорителях.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Потупа читать все книги автора по порядку

Александр Потупа - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Открытие Вселенной - прошлое, настоящее, будущее отзывы


Отзывы читателей о книге Открытие Вселенной - прошлое, настоящее, будущее, автор: Александр Потупа. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x