Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее
- Название:Открытие Вселенной - прошлое, настоящее, будущее
- Автор:
- Жанр:
- Издательство:Юнацтва
- Год:1991
- Город:Минск
- ISBN:5-7880-0325-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее краткое содержание
На основе обширных данных из астрономии, астрологии, географии, физики, математики, химии, биологии, истории, археологии и других наук автор рассказывает о строении Вселенной, истории человечества, о планетах Солнечной системы и Галактике, о звездах и их эволюции, о возможностях существования внеземных цивилизаций, о перспективах космических исследований, об идее контакта с инопланетянами.
Открытие Вселенной - прошлое, настоящее, будущее - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Благодаря этому обстоятельству и состоялось экспериментальное открытие черных дыр. Рентгеновский источник в созвездии Лебедя (Cyg X–I) связан с яркой звездой-сверхгигантом. Период яркой звезды 5.6 дня, а масса — порядка 20 М €. Удалось оценить и массу темной компоненты — она заключена в пределах 8-11 М €. Кроме того, наблюдалась хаотическая изменчивость рентгеновского потока с характерным временем порядка одной тысячной секунды, что как раз соответствует периоду обращения газового облака на расстояниях, где, согласно теории, должно иметь место максимальное энерговыделение.
Все это дает основания с большой долей уверенности говорить о регистрации черной дыры. Аналогичные объекты найдены в созвездиях Скорпиона (V 861 SCO источник ОАО 1653-40) и Циркуля (Cir X–I).
Другое менее надежное указание получено в связи с исследованием 14 импульсных рентгеновских источников с резким, в течение секунд, изменением спектра. Некоторые из них (MX 0513-40, 3 U 1820-30 и А 1850-08) надежно соотнесены с шаровыми скоплениями (NGC-1851, NGC-6625, NGC-6712, соответственно). В этом случае довольно правдоподобно, что в центре каждого из шаровых скоплений находится очень массивная черная дыра (М €). Однако пока такое объяснение остается не более чем интересной гипотезой, мы еще не достаточно ясно представляем себе законы коллективной эволюции звезд в плотных скоплениях, а также механизм формирования суперзвезд в сотни раз массивней Солнца на космогонической стадии. Есть также указания на присутствие черной дыры с М ~ 4 10 6 М €в центре нашей Галактики, а в центре галактики М 87 — даже с М ~ 5.10 9 М €!.
Если же говорить о надеждах, то черные дыры представляются чем-то очень широко распространенным во Вселенной. По идее, они должны встречаться часто и на весьма различных уровнях. В этом плане особо подозрительны ядра галактик и центры шаровых скоплений — места, где в условиях высокой концентрации вещества «сам Бог велел» создаваться сильным гравитационным полям и суперзвездам грандиозного масштаба.
В связи с этим обратим внимание вот на какие обстоятельства. Почему Лапласу пришлось изобретать монстр в 60 миллионов солнечных масс? Ответ прост. В его время представления о структуре вещества были развиты слабо, и он вряд ли мог представить себе космические объекты с плотностью атомного ядра — то, чем свободно оперировали теоретики 30-х годов 20 века, современники становления ядерной физики. Тем не менее, вплоть до открытия белых карликов и пульсаров в реальное существование сверхплотных звезд верили не слишком охотно.
Что же касается черных дыр — сейчас их высокой плотностью трудно кого-нибудь удивить. Само образование черных дыр с массой порядка 10 М €как возможной конечной стадии звездной эволюции теперь тоже не представляется чем-то из ряда вон выходящим.
Весьма вероятно, что ближайшие годы принесут окончательное открытие сверхмассивных дыр с относительно небольшой плотностью и массами от нескольких сот до миллиардов М €, и лапласовские монстры станут чем-то привычным. Это откроет путь к решению проблемы коллективной эволюции звездных скоплений самого разного масштаба. Действительно, трудно поверить, что в плотных шаровых скоплениях и тем более в галактических ядрах каждая звезда могла бы рождаться и умирать совершенно индивидуально, никак не связываясь с судьбой ассоциации. Именно эта связь и должна во многих случаях приводить к появлению разномасштабных черных дыр с огромными массами. Один из важных гипотетических вариантов такого рода — присутствие гигантских черных дыр в ядрах квазаров, что пока дает едва ли не единственный путь к объяснению их фантастической светимости.
Казалось бы, все в порядке, остается только активно вести расширение круга наблюдений по более или менее ясной схеме.
Но тут-то как раз произошло интереснейшее уточнение самой схемы, если можно так выразиться, состоялось третье теоретическое рождение черных дыр.
В 1974 году английский теоретик С. Хокинг опубликовал в журнале «Nature» («Природа») небольшую заметку с интригующим вопросом в заголовке «Взрывы черных дыр?». Это положило начало, пожалуй, самому впечатляющему астрофизическому буму 70-х годов.
Идея Хокинга была довольно проста. Как бы ни самоизолировалась черная дыра, она всегда связана с вакуумом элементарных частиц. Процессы вблизи ее поверхности идут с характерным временем t g~ R g/c = 2GM/c 3, и они вызывают рождение частиц с энергией E ~ ћω g ~ ћ/ t g — характерная собственная частота черной дыры как бы резонирует с частотами вакуума, вышибая из него реальные частицы. Более наглядно можно пояснить ситуацию так: черная дыра способна удержать объекты с размером l «R g, но не излучение с длинами волн λ r R g, которое как бы выдавливается из черной дыры в силу соотношения неопределенностей [121] Соотношение неопределенностей ∆р.∆x Á ћ показывает, что объект с импульсом р = ћω/c нельзя локализовать в области с размером меньшим ћ/р ~ c/ω~ λ . Излучение с длиной волны λ не локализуется в области с размером меньше λ.
».
Отсюда следовало, что черная дыра вовсе не мертва. С точки зрения квантовой теории, она должна излучать во внешнее пространство радиоволны, свет и даже тяжелые элементарные частицы — все, что допустимо ее размерами и энергетическими возможностями. Излучая, черная дыра разогревается, теряет массу, и конечная стадия ее испарения должна выглядеть как взрыв. Законы эволюции черной дыры, следующие из хокинговской модели, очень наглядно записываются с использованием планковских масштабов (М — масса черной дыры):
Светимость: L ~ L P(m Р/M) 2
Температура: Т ~ T P(m Р/M)
Плотность: ½ ~ ½ P(m Р/M) 2
Время жизни: τ ~ M/L ~ t P(m Р/M) 3» 3.1017 (M (г)/10 15) 3с
Отсюда хорошо видно, что эффект хокинговского излучения несущественен для обычных черных дыр типа Лебедя X–I, чья температура порядка 10 8 К, а время испарения сильно превышает возраст Вселенной (τ ~ 10 74 с!). Тем более, практически незаметна квантовая эволюция гипотетических дыр-гигантов.
Забавные дырочки размером около 1 миллиметра, но с довольно солидной массой (М ~ 10 27 г) и колоссальной плотностью (½ ~ 2,5.10 30 г/см 3) могли бы имитировать наблюдаемый фон теплового излучения с температурой в несколько градусов Кельвина. Однако чтобы вытеснить модель космологического реликтового излучения, следовало бы предположить, что малютки существуют в изобилии и распределены в пространстве крайне равномерно по всем направлениям. Неясно также их происхождение.
Наибольший интерес с самого начала вызвали, конечно, черные дыры с массами М~10 15 г. Ведь они способны полностью испариться за известный космологический период, и в современную эпоху какая-то их часть должна взрываться, выбрасывая чрезвычайно жесткое излучение.
Читать дальшеИнтервал:
Закладка: