Александр Потупа - Бег за бесконечностью

Тут можно читать онлайн Александр Потупа - Бег за бесконечностью - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Молодая гвардия, год 1977. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Потупа - Бег за бесконечностью краткое содержание

Бег за бесконечностью - описание и краткое содержание, автор Александр Потупа, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге рассказывается о современных представлениях об одной из самых быстроразвивающихся фундаментальных наук — физике элементарных частиц. Основное внимание уделено описанию сильновзаимодействующих частиц — адронов их поведению в различных реакциях при высоких энергиях.

Бег за бесконечностью - читать онлайн бесплатно полную версию (весь текст целиком)

Бег за бесконечностью - читать книгу онлайн бесплатно, автор Александр Потупа
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Впоследствии удалось добиться еще большего увеличения, используя вместо электронов тяжелые ионы: на так называемом микроскопе Мюллера были получены красивые дифракционные картинки — снимки атомов.

Электронная микроскопия совместно с рентгеноскопическими методами буквально преобразовала экспериментальную базу биологии. С их помощью был разгадан наследственный код и решено множество других важных задач.

Обнаружив такие выдающиеся способности электрона при исследовании структуры вещества, ученые не могли, конечно, пройти мимо соблазна использовать их для решения фундаментальных физических проблем. Физики довольно рано осознали, что наряду с зондированием атомно-молекулярной структуры электронный пучок с достаточно малой длиной волны способен дать важнейшую информацию о внутреннем устройстве атомных ядер и даже отдельных элементарных частиц. Но для этого необходимо преодолеть немалый барьер научиться создавать пучки частиц с исключительно высоким импульсом. Так постепенно зарождались взгляды, открывшие новую эпоху в исследованиях микромира.

Итак, электроны продемонстрировали волновые свойства. Если разобраться в исторических фактах, то «генеалогическому древу» физики элементарных частиц ничего не угрожает. Ведь гипотезы о непрерывной (читай — волновой) субстанции, лежащей в основе всех вещей и пронизывающей пространство и время, также восходят к древним грекам. Они встречаются у великого Платона, их сторонником был, по-видимому, и сам Аристотель. Корпускулярной теории света, сформулированной во второй половине XVII века Исааком Ньютоном, противостояла волновая концепция крупнейшего авторитета в области оптики и в других разделах физики — X. Гюйгенса. И так во всей истории физики: когда один ученый говорил — «частица», почти сразу же находился другой, заявлявший не менее убедительно — «волна».

Борьба мнений в науке — необходимый и интересный процесс, но… Что же такое эти элементарные частицы на самом деле? Частицы ли это в собственном смысле слова, то есть нечто более или менее твердое, обладающее резко выраженной границей или «размазанные» по всему пространству волны?

Дальнейшее движение вперед без ответа на этот вопрос невозможно. Поэтому нам предстоит совершить еще одно путешествие в те же времена.

Маршрут № 3. снова квантованный мир

Пока вне поля нашего зрения остались события, которые уже с 1927 года повели физику элементарных частиц по новому пути. Электрон оказался и не волной и не частицей (в классическом понимании этих образов), и древний как мир спор стал объектом внимания историков от науки и философов.

Вкратце ход решения двадцатипятивековой дилеммы выглядит следующим образом. Через некоторое время после публикации дебройлевских работ ими заинтересовался австрийский физик-теоретик Э. Шредингер. В серии работ, выполненных в 1925–1927 годах, он довел гипотезу Л. де Бройля до уровня серьезной теории и вполне справедливо назвал ее волновой механикой.

Огромное преимущество такого подхода перед так называемой «старой квантовой механикой» заключалось в построении ясного и предельно общего метода решения любой задачи о поведении микрочастиц. Этот метод был основан на знаменитом уравнении Шредингера для дебройлевских волн. Это уравнение связывало всякое изменение волны во времени с энергией частицы, с которой сопоставлена эта волна. Достаточно было только выяснить вид потенциальной энергии взаимодействия двух или нескольких частиц и ввести эту функцию в уравнение — дальше возникала чисто математическая (лишь в редких случаях простая!) проблема. На основе такого метода практически все задачи, которые с великими трудностями и не менее великим искусством решали создатели старой квантовой механики, в первую очередь Н. Бор и его ученики, становились едва ли не упражнениями для студентов (сейчас они входят в программу III–IV курсов университета!). Но не менее важно и то, что был расчищен путь к задачам, о которых раньше и мечтать не смели.

Отдавая должное замечательным качествам волновой механики, Н. Бор и многие другие физики непрерывно полемизировали с Э. Шредингером по поводу трактовки волновой функции, для определения которой и было написано «всемогущее» уравнение.

Особую остроту этим спорам придавала та позиция, которую твердо занял Э. Шредингер. Он оказался, как говорится, «еще большим католиком, чем сам папа римский» и выдвинул идею, что в природе нет ничего, кроме волн! Это был существенный шаг за рамки исходной дебройлевской гипотезы. Никаких частиц на самом деле нет, утверждал австрийский физик, о них можно говорить лишь приближенно, с точки зрения классической физики, а для волновой механики этот образ совершенно лишен смысла!

Э. Шредингер полагал, что волновая функция описывает реальный волновой процесс в пространстве подобно тому, как формулы напряженности полей описывают электромагнитные волны. Если же концентрация дебройлевских волн в некоторой малой области пространства очень велика, то возникает «нечто», напоминающее частицу в обычном классическом понимании этого слова, своеобразный волновой сгусток, ведущий себя как частица.

Дискуссия по этому поводу затронула практически всех крупнейших физиков того времени, и большинство из них не согласилось с чисто волновой концепцией электрона, считая, что частицы так или иначе должны остаться частицами. Однако сохранять корпускулярные представления стало тоже далеко не простым делом, и решение проблемы было найдено на весьма оригинальном и неожиданном пути.

В 1927 году один из лидеров «квантовой революции», М. Борн, прославившийся рядом глубоких работ в различных разделах теоретической физики, рассматривал задачу о рассеянии электронов с помощью уравнения Шредингера. Получив формальное решение, он приступил к анализу едва ли не самого сложного вопроса: что же скрывается за красивыми математическими выражениями волновой теории? М. Борн старался взглянуть на постановку задачи и на конечный результат глазами экспериментатора. Независимо от того, что теоретики «измыслили» волновое уравнение и стараются ограничить себя только волновыми представлениями, рассуждал он, экспериментаторы всегда говорят о потоке частиц, о регистрации частиц… Может быть, это лишь вопрос удобства тех или иных слов? Может быть, люди, занятые постановкой опытов, просто не склонны к более глубокому постижению законов природы и абстрактному волновому подходу?

Нет, продолжал он, надежда на «близорукость» экспериментаторов ничем не оправдана, скорее наоборот, волновая теория не дает ясного ответа на вопрос, откуда берутся мельчайшие частицы вещества, занимающие чрезвычайно малый объем пространства. Ведь именно с ними приходится иметь дело в реальных опытах! А все слова о том, что вместо всамделишных частиц наблюдаются какие-то концентрированные волновые образования, пока не имеют под собой серьезных теоретических и экспериментальных оснований. Поэтому необходимо найти такую трактовку волновой функции, которая позволила бы, с одной стороны, сохранить естественное представление о частицах, а с другой объяснить своеобразные волновые закономерности в распределениях этих же частиц, получающихся, скажем, при исследовании рассеяния.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Потупа читать все книги автора по порядку

Александр Потупа - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Бег за бесконечностью отзывы


Отзывы читателей о книге Бег за бесконечностью, автор: Александр Потупа. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x