Александр Потупа - Бег за бесконечностью
- Название:Бег за бесконечностью
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1977
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Потупа - Бег за бесконечностью краткое содержание
В книге рассказывается о современных представлениях об одной из самых быстроразвивающихся фундаментальных наук — физике элементарных частиц. Основное внимание уделено описанию сильновзаимодействующих частиц — адронов их поведению в различных реакциях при высоких энергиях.
Бег за бесконечностью - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Дело в том, что, хотя кварки и заперты внутри адрона и никаким сколь угодно сильным ударом их нельзя оттуда извлечь в чистом виде, с ростом энергии их присутствие в адроне будет проявляться все отчетливей. Пусть экспериментаторы так никогда и не увидят следы составных частей адрона на фотопленке: важно то, что чем больше энергия налетающей на адрон частицы, тем лучше она, эта частица, будет чувствовать отдельные элементы структуры кварки. В конце концов тогда картина адронных процессов станет достаточно простой, и мы сумеем выяснить природу межкварковых сил.
Нелегко представить себе составной объект, из которого никоим способом нельзя выделить его составные части. Их можно почувствовать, только взаимодействуя со всем объектом как с целым… Это трудное новое представление, с которым постепенно придется осваиваться, подобно тому, как лет 50 назад с трудом осваивалась квантовомеханическая картина атома.
Стремление работать со все более высокими энергиями основано, конечно, не только на желании разобраться в поведении и структуре адронов. Одна из самых важных задач, стоящих перед физиками, — детальный анализ слабых взаимодействий элементарных частиц. Единственная частица, которая непосредственно участвует только в слабых взаимодействиях, — это нейтрино. Поэтому все больший интерес вызывают эксперименты по рассеянию нейтрино высоких энергий на протонах, лептонах и атомных ядрах.
Современная модель слабых взаимодействий предсказывает, например, очень быстрый рост сечения рассеяния нейтрино на протонах. Самое любопытное состоит в том, что пока экспериментальные данные очень хорошо подтверждают это предсказание. С другой стороны, общие принципы современной теории позволяют заключить, что эта модель при достаточно высоких энергиях непременно должна нарушиться.
Столь же интересные проблемы существуют и в физике электромагнитных взаимодействий. Важно узнать, вплоть до каких энергий будет применима квантовая электродинамика? Как будут вести себя сверхэнергичные фотоны, сталкиваясь с электронами и адронами? И это все — лишь небольшая часть многих и многих совершенно конкретных задач, требующих постановки экспериментов при все более высоких энергиях.
Вообще-то физики всегда надеются на открытие чего-нибудь совершенно неожиданного, и надежды часто оправдываются. Но это, как правило, лишь неизбежные подарки природы за настойчивость исследователей. Бывает, что обнаруживаются и фантастические частицы, и удивительные закономерности, однако, как мы уже не раз успели убедиться, под «принеси то, не знаю что» опытов никто не ставит и ускорителей никто не строит.
Стэнфордский электронный ускоритель создавался с вполне определенной целью — надо было более глубоко изучить структуру адронов и, конечно, проверить, пригодна ли современная квантовая электродинамика для описания явлений в области достаточно высоких энергий. Открытие партонов послужило прекрасным оправданием этого проекта — ведь были обнаружены новые элементы структуры нуклона!
Кроме того, в Стэнфорде была построена специальная установка СПИР накопительное кольцо для того, чтобы иметь возможность сталкивать между собой пучки электронов и позитронов. Этот проект преследовал сравнительно скромную цель — измерить сечения различных процессов, возникающих при электрон-позитронных столкновениях. Но за внешне скромной идеей стояли великие надежды. Ведь квантовая электродинамика дает четкие предсказания по поводу взаимодействия этих частиц, однако при высоких энергиях эта теория становится недостаточной, поскольку электрон и позитрон охотно аннигилируют в адроны, и тут уж без знания законов сильных взаимодействий не обойтись. Надо было разобраться, что же идет от чисто электромагнитных взаимодействий, а что — от адронных процессов. Физики и раньше предчувствовали, что вклад последних не так уж мал, но го, что они увидели, превзошло все ожидания.
В конце осени 1974 года научный мир был потрясен серией удивительных сообщений. Американский журнал «Письма в физическое обозрение» поместил сразу три небольшие заметки на одну и ту же тему. Во всех трех говорилось, что в электрон-позитронных столкновениях обнаружен новый тип резонансных частиц. Заметки поступили практически одновременно из Брукхэвена, из Стэнфорда и из итальянского города Фраскати, причем итальянцы, чтобы не терять время на почтовую пересылку, продиктовали свою статью прямо по телефону…
Новые частицы пси-мезоны, как их сразу обозначили, обладали весьма примечательными свойствами: массами более 3 ГэВ и слишком большим временем жизни, чтобы считать их обычными адронными резонансами. Некоторое время сохранялась надежда, что сделано «открытие века» — найдены, наконец, долгожданные зэт-мезоны — гипотетические переносчики слабых взаимодействий наряду с дубль-вэ-мезонами (заместители фотонов по «слабым силам»).
По поводу дубль-вэ-мезонов и дубль-зэт-мезонов физики думали, что они будут иметь большие массы и взаимодействовать только слабым и электромагнитным образом. Но вскоре было доказано, что пси-мезоны настоящие адроны, а их долгожительство оказалось действительно сложнейшей проблемой. В процессе ее исследования выяснилось, что теперь уже без нового квантового числа — «очарования» обойтись практически невозможно Пси-мезоны должны быть своеобразными кварковыми атомами, состоящими как раз из «очарованного» кварка и антикварка.
История открытия пси-мезонов интересна и сама по себе, но для нас она играет дополнительную роль как пример незапланированного открытия в сугубо плановых экспериментах. В Брукхэвене опыты ставились на старом протонном ускорителе, работающем уже с 1960 года, и изучались электрон-позитронные пары, образующиеся в результате бомбардировки ядер бериллия протонами. В Стэнфорде же и во Фраскати исследования велись на установках, специально созданных для получения высокоэнергетических электронных и позитронных пучков. Но, конечно, ни в одном из этих центров не предполагали, что удастся открыть именно пси-частицы, а просто выполняли весьма обширные программы по измерению сечений электрон-позитронных взаимодействий. Можно ли сказать, что исследователям просто повезло? Только лишь отчасти! Ибо не имей они ясных целей, до везения дело бы просто не дошло.
Без хорошо обоснованных экспериментальных программ современная физика высоких энергий совершенно немыслима. И дело здесь не только в скептическом или восторженном отношении к броскам «в нечто неведомое». За эмоциями стоят весьма серьезные, хотя и несколько прозаические аргументы — рубли, доллары, фунты, марки…
Читать дальшеИнтервал:
Закладка: