Дмитрий Гусев - Удивительная логика
- Название:Удивительная логика
- Автор:
- Жанр:
- Издательство:Литагент «ЭНАС»010217eb-b049-102b-b8f2-843476b21e7b
- Год:2010
- Город:М.
- ISBN:978-5-93196-982-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дмитрий Гусев - Удивительная логика краткое содержание
Логику не изучают в школе. Тем не менее, мы пользуемся ее законами с детских лет: учимся размышлять и принимать решения, осмысливаем происходящее, постигаем разные науки и, самое главное, общаемся с другими людьми – поясняем свою позицию, возражаем, спорим, убеждаем…
Современный умный, развитый человек просто обязан владеть логическим мышлением – оно упорядочивает полученные знания, придает ясность речи, делает убедительной аргументацию и позволяет добиваться победы в дискуссиях.
Книга «Удивительная логика» требует определенного напряжения умственных сил и может служить своеобразной проверкой базовых логических способностей человека. В то же время она позволяет развить персональные интеллектуальные данные и творческие навыки поиска нестандартных решений. Одним словом, она учит мыслить.
Тестовым и развивающим целям служат и приведенные в конце издания оригинальные логические задачи.
Книга адресована в первую очередь старшеклассникам и студентам, интересующимся логикой и желающим активно использовать ее законы для достижения личного успеха.
Удивительная логика - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Умозаключения по аналогии(аналогия) (от греч. analogia – «соответствие») – это умозаключения, в которых на основе сходства предметов (объектов) в одних признаках делается вывод об их сходстве и в других признаках. Например:
Планета Земля расположена в Солнечной системе, на ней есть атмосфера, вода и жизнь.
Планета Марс расположена в Солнечной системе, на ней есть атмосфера и вода.
=> Вероятно, на Марсе есть жизнь.
Как видим, сопоставляются два объекта (планета Земля и планета Марс), которые сходны между собой в некоторых существенных, важных признаках (находиться в Солнечной системе, иметь атмосферу и воду). На основе данного сходства делается вывод о том, что, возможно, эти объекты сходны между собой и в других признаках: если на Земле есть жизнь, а Марс во многом похож на Землю, то не исключено наличие жизни и на Марсе. Выводы аналогии, как и выводы индукции, вероятностны.
Когда все суждения простые (Категорический силлогизм)
Все дедуктивные умозаключения называются силлогизмами(от греч. sillogismos – «подсчитывание, подытоживание, выведение следствия»). Существует несколько видов силлогизмов. Первый из них называется простым, или категорическим, потому что все входящие в него суждения (две посылки и вывод) являются простыми, или категорическими. Это уже известные нам суждения видов А, I, Е, О.
Рассмотрим пример простого силлогизма:
Все цветы ( М ) – это растения ( Р ).
Все розы ( S ) – это цветы ( М ).
=> Все розы ( S ) – это растения ( Р ).
Обе посылки и вывод являются в данном силлогизме простыми суждениями, причем и посылки, и вывод – это суждения вида А (общеутвердительные). Обратим внимание на вывод, представленный суждением Все розы – это растения. В этом выводе субъектом выступает термин розы, а предикатом – термин растения. Субъект вывода присутствует во второй посылке силлогизма, а предикат вывода – в первой. Так же в обеих посылках повторяется термин цветы, который, как нетрудно увидеть, является связующим: именно благодаря ему не связанные, разобщенные в посылках термины растения и розы можно связать в выводе. Таким образом, структура силлогизма включает в себя две посылки и один вывод, которые состоят из трех (различным образом расположенных) терминов.
Субъект вывода располагается во второй посылке силлогизма и называется меньшим термином силлогизма(вторая посылка также называется меньшей).
Предикат вывода располагается в первой посылке силлогизма и называется б́ольшим термином силлогизма(первая посылка также называется большей). Предикат вывода, как правило, является по объему большим понятием, чем субъект вывода (в приведенном примере понятия розы и растения находятся в отношении родовидового подчинения), в силу чего предикат вывода называется б́ольшим термином, а субъект вывода – меньшим.
Термин, который повторяется в двух посылках и связывает субъект с предикатом (меньший и больший термины), называется средним термином силлогизмаи обозначается латинской буквой М (от лат. medium – «средний»).
Три термина силлогизма могут быть расположены в нем по-разному. Взаимное расположение терминов друг относительно друга называется фигурой простого силлогизма. Таких фигур четыре, т. е. все возможные варианты взаимного расположения терминов в силлогизме исчерпываются четырьмя комбинациями. Рассмотрим их.
Первая фигура силлогизма– это такое расположение его терминов, при котором первая посылка начинается со среднего термина, а вторая заканчивается средним термином. Например:
Все газы ( М ) – это химические элементы ( Р ).
Гелий ( S ) – это газ ( М ).
=> Гелий ( S ) – это химический элемент ( Р ).
Учитывая, что в первой посылке средний термин связан с предикатом, во второй посылке субъект связан со средним термином, а в выводе субъект связан с предикатом, составим схему расположения и связи терминов в приведенном примере (рис. 34).

Прямые линии на схеме (за исключением той, которая отделяет посылки от вывода) показывают связь терминов в посылках и в выводе. Поскольку роль среднего термина заключается в том, чтобы связывать больший и меньший термины силлогизма, то на схеме средний термин в первой посылке соединяется линией со средним термином во второй посылке. Схема показывает, каким именно образом средний термин связывает между собой другие термины силлогизма в его первой фигуре. Кроме того, отношения между тремя терминами можно изобразить с помощью кругов Эйлера. В данном случае получится следующая схема (рис. 35).

Вторая фигура силлогизма– это такое расположение его терминов, при котором и первая, и вторая посылки заканчиваются средним термином. Например:
Все рыбы ( Р ) дышат жабрами ( М ).
Все киты ( S ) не дышат жабрами ( М ).
=> Все киты ( S ) не рыбы ( Р ).
Схемы взаимного расположения терминов и отношений между ними во второй фигуре силлогизма выглядят так, как показано на рис. 36.

Третья фигура силлогизма– это такое расположение его терминов, при котором и первая, и вторая посылки начинаются со среднего термина. Например:
Все тигры ( М ) – это млекопитающие ( Р ).
Все тигры ( М ) – это хищники ( S ).
=> Некоторые хищники ( S ) – это млекопитающие ( Р ).
Схемы взаимного расположения терминов и отношений между ними в третьей фигуре силлогизма изображены на рис. 37.

Четвертая фигура силлогизма– это такое расположение его терминов, при котором первая посылка заканчивается средним термином, а вторая начинается с него. Например:
Все квадраты ( Р ) – это прямоугольники ( М ).
Все прямоугольники ( М ) – это не треугольники ( S ).
=> Все треугольники ( S ) – это не квадраты ( Р ).
Схемы взаимного расположения терминов и отношений между ними в четвертой фигуре силлогизма показаны на рис. 38.
Читать дальшеИнтервал:
Закладка: