Джеймс Глейк - Хаос. Создание новой науки
- Название:Хаос. Создание новой науки
- Автор:
- Жанр:
- Издательство:Амфора
- Год:2001
- Город:Санкт-Петербург
- ISBN:5-94278-139-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джеймс Глейк - Хаос. Создание новой науки краткое содержание
В 1970-х годах ученые начинают изучать хаотические проявления в окружающем нас мире: формирование облаков, турбулентность в морских течениях, колебания численности популяций растений и животных… Исследователи ищут связи между различными картинами беспорядочного в природе.
Десять лет спустя понятие «хаос» дало название стремительно расширяющейся дисциплине, которая перевернула всю современную науку. Возник особый язык, появились новые понятия: фрактал, бифуркация, аттрактор…
История науки о хаосе — не только история новых теорий и неожиданных открытий, но и история запоздалого постижения забытых истин. Эта книга — яркое и образное повествование о сложных и глубоких вещах, окрашенное драматизмом и поэтичностью. Прочитав «Хаос», вы уже никогда не будете смотреть на мир прежними глазами.
Хаос. Создание новой науки - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Тем не менее глубокая проницательность, комментарии, заметки на полях и вкрапления из физики сделали работу объектом внимания на долгие годы. Наиболее соблазнительным казался образ, окрещенный авторами странным аттрактором . Это название было суггестивным, как говорят психоаналитики, т. е. самим своим звучанием рождало подсознательные ассоциации, что Руэлль ощутил позднее. Термин «странный аттрактор» приобрел такую популярность у исследователей хаоса, что Такенс и Руэлль потом оспаривали друг у друга авторство. Ни тот ни другой не могли отчетливо припомнить, кто первый использовал термин. Такенс — высокий, румяный и неистовый норманн — временами ронял: «Вам когда-нибудь доводилось спрашивать у Господа, как он создал эту чертову Вселенную?.. Я ничего не помню… Творю, не запоминая подробностей этого процесса». На что Руэлль, главный из соавторов, мягко замечал: «Разные люди и работают по-разному. Некоторым людям следовало бы писать статьи в одиночку, чтобы затем единолично пожинать лавры».
Странный аттрактор обитает в фазовом пространстве — одном из удивительнейших изобретений современной науки. Фазовое пространство делает возможным превращение чисел в изображения, извлекая даже малую толику существенной информации из движущихся систем, механических или жидкостных, и наглядно демонстрируя все их возможности. Физики уже имели дело с двумя более или менее простыми типами аттракторов — фиксированными точками и замкнутыми кривыми, описывающими поведение таких систем, которые достигли устойчивого состояния или непрерывно себя повторяют.
В фазовом пространстве все известные данные о динамической системе в каждый момент времени концентрируются в одной точке, которая и представляет собой данную систему в кратчайшем временном отрезке. В следующее мгновение система уже претерпит изменения, пусть даже совсем незначительные, и точка изменит свое местонахождение. Всю длительность существования системы можно изобразить на графике, следя за перемещениями точки с течением времени и наблюдая за ее орбитой в фазовом пространстве.
Но как же все данные о сложнейшей системе могут быть представлены лишь в одной точке? Если система характеризуется двумя переменными, найти ответ не составляет труда, он напрямую вытекает из Евклидовой геометрии, преподаваемой в средней школе: одна из переменных располагается на горизонтальной оси x , а другая — на вертикальной оси y . Если же система представляет собой качающийся маятник, свободный от действия силы трения, то одна из переменных является его положением в пространстве, а другая — скоростью. Они непрерывно меняются, образуя линию из точек, которая изгибается петлей, вновь и вновь повторяющей саму себя. Та же система, но обладающая более высокой энергией, раскачивающаяся быстрее и дальше, образует в фазовом пространстве петлю, схожую с первой, но большую по размерам.
Впрочем, столкнувшись с одним из проявлений реальности — трением, система начинает претерпевать изменения. Чтобы описать поведение маятника, подверженного трению, не нужны уравнения движения: каждое его колебание фактически заканчивается на одном и том же месте, в центре, откуда начиналось движение, и скорость его в эти моменты равна нулю. Данная центральная фиксированная зона как бы «притягивает» колебания. Вместо того чтобы вечно чертить на графике петли, орбита маятника спиралью закручивается внутрь. Трение рассеивает энергию системы, что в фазовом пространстве выглядит как толчок к центру. Наблюдается движение из внешних зон с высокой энергией к внутренним зонам с низкой энергией. Аттрактор — простейший из возможных — подобен магниту величиной с булавочную головку, встроенному в лист резины.
Одним из преимуществ рассмотрения состояний системы как совокупности точек в пространстве является то, что в таком случае легче наблюдать происходящие изменения. Система, в которой переменные непрерывно увеличиваются и уменьшаются, превращается в движущуюся точку, словно муха, летающая по комнате. Если некоторые комбинации переменных никогда не возникают, ученый может просто предположить, что пределы комнаты ограничены и насекомое никогда туда не залетит. При периодическом поведении изучаемой системы, когда она снова и снова возвращается к одному и тому же состоянию, траектория полета мушки образует петлю, и насекомое минует одну и ту же точку в пространстве множество раз. Своеобразные портреты физических систем в фазовом пространстве демонстрировали образцы движения, которые были недоступны наблюдению иным способом. Так фотография природного ландшафта в инфракрасных лучах открывает те мелочи и детали, которые существуют вне досягаемости нашего восприятия. Ученый, взглянув на фазовую картину, мог, призвав на помощь воображение, уяснить сущность самой системы: петля здесь соответствует периодичности там, конкретный изгиб воплощает определенное изменение, а пустота говорит о физической невероятности.
Даже при наличии двух переменных изображения в фазовом пространстве могли еще многим удивить. Даже на мониторах настольных компьютеров можно было построить кое-какие из них, превращая уравнения в красочные траектории. Некоторые физики начали создавать серии движущихся картинок и снимать видеопленки, чтобы продемонстрировать их своим коллегам. Математики из Калифорнии публиковали книги, иллюстрированные множеством красно-сине-зеленых рисунков в стиле анимации, — «комиксы хаоса», как отзывались о них, не без яда, коллеги авторов. Но пара измерений не охватывала всего богатства систем, которые хотели изучать физики, и ученые стремились ввести больше двух переменных, что, естественно, требовало увеличения числа измерений. Каждый фрагмент динамической системы, способный к независимому перемещению, является уже новой переменной, воплощая иную «степень свободы», и для каждой такой степени требуется новое измерение в фазовом пространстве. Иначе нет уверенности, что одна-единственная точка содержит достаточно информации для описания состояния системы в каждый конкретный момент времени. Простые уравнения, изучавшиеся Робертом Мэем, являлись однопространственными. Они позволяли обойтись одним числом — значением температуры или численности популяции, которое определяло местоположение точки на прямой, располагавшейся в одном измерении. Развернутая система Лоренца, описывавшая конвекцию в жидкостях, имела три измерения, но не потому, что жидкость двигалась в трех пространственных измерениях, а потому, что для описания состояния жидкости в каждый момент времени требовалось три вполне определенных числа.
Читать дальшеИнтервал:
Закладка: