Джеймс Глейк - Хаос. Создание новой науки
- Название:Хаос. Создание новой науки
- Автор:
- Жанр:
- Издательство:Амфора
- Год:2001
- Город:Санкт-Петербург
- ISBN:5-94278-139-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джеймс Глейк - Хаос. Создание новой науки краткое содержание
В 1970-х годах ученые начинают изучать хаотические проявления в окружающем нас мире: формирование облаков, турбулентность в морских течениях, колебания численности популяций растений и животных… Исследователи ищут связи между различными картинами беспорядочного в природе.
Десять лет спустя понятие «хаос» дало название стремительно расширяющейся дисциплине, которая перевернула всю современную науку. Возник особый язык, появились новые понятия: фрактал, бифуркация, аттрактор…
История науки о хаосе — не только история новых теорий и неожиданных открытий, но и история запоздалого постижения забытых истин. Эта книга — яркое и образное повествование о сложных и глубоких вещах, окрашенное драматизмом и поэтичностью. Прочитав «Хаос», вы уже никогда не будете смотреть на мир прежними глазами.
Хаос. Создание новой науки - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Схема Пуанкаре лишает аттрактор одного измерения и превращает непрерывную линию в совокупность точек. Преобразуя аттрактор в схему Пуанкаре, ученый ни на минуту не сомневается, что сохранит самую суть движения. Он может вообразить, к примеру, что странный аттрактор вьется, словно пчела, у него перед глазами и орбиты аттрактора перемещаются вверх и вниз, влево и вправо, взад и вперед по дисплею компьютера, и каждый раз, когда орбита аттрактора пересекает плоскость экрана, она оставляет светящуюся точку в месте пересечения. Такие точки либо образуют похожее на кляксу пятно произвольной формы, либо начинают вычерчивать некий контур на экране.
Описанный выше процесс соответствует отбору образцов состояния системы, который ведется не постоянно, а лишь время от времени. Когда брать пробу, т. е. из какой области странного аттрактора вырезать ломтик, — дело исследователя. Временной интервал, в котором содержится наибольшее количество информации, должен соответствовать некоему физическому свойству динамической системы. Например, на схеме Пуанкаре можно отражать скорость отвеса маятника каждый раз, когда он проходит через самую низкую точку. Или экспериментатор волен выбрать определенный регулярный промежуток времени, «замораживая» последовательные состояния во вспышках воображаемого света, исходящего из стробоскопического источника. В любом случае в получаемых изображениях проявится в конце концов изящная фрактальная структура, о которой догадывался Эдвард Лоренц.

Рис. 5.4. Структура аттрактора. Странный аттрактор, как показано на верхних рисунках, сначала имеет одну орбиту, затем десять, затем сто. Он описывает хаотичное поведение ротора-маятника, колеблющегося по всему кругу и регулярно приводимого в движение притоком энергии. Через некоторое время, когда на рисунке появится тысяча орбит (ниже) , аттрактор превратится в запутанный клубок. Чтобы можно было исследовать его внутреннее строение, компьютер делает поперечный срез аттрактора — так называемое сечение Пуанкаре (рисунок в рамке) . Этот прием уменьшает число измерений с трех до двух. Каждый раз, когда траектория пересекает плоскость, она оставляет на ней точку. Постепенно возникает весьма детализированный образ. Показанный здесь образец состоит более чем из восьми тысяч точек, каждая из которых находится на орбите, окружающей аттрактор. Фактически система замеряется в регулярные промежутки. Одни данные утрачиваются, зато другие выявляются во всем их разнообразии.
Наиболее доступный для понимания и самый простой странный аттрактор был построен человеком, весьма далеким от загадок турбулентности и гидродинамики, — астрономом Мишелем Эноном из обсерватории Ниццы на южном побережье Франции. Бесспорно, в каком-то отношении астрономия дала толчок изучению динамических систем. Планеты, двигающиеся с точностью часового механизма, обеспечили триумф Ньютона и вдохновили Лапласа. Однако небесная механика значительно отличалась от земной: земные системы, теряющие энергию на трение, являются диссипативными, чего нельзя сказать об астрономических, считающихся консервативными, или гамильтонианскими. На самом же деле в масштабе, близком к бесконечно малому, даже в астрономических системах наблюдается нечто вроде торможения. Оно происходит, когда звезды излучают энергию, а трение приливно-отливного характера истощает кинетическую энергию движущихся по орбитам небесных тел. Однако для практического удобства астрономы в своих вычислениях пренебрегают рассеиванием, а без него фазовое пространство не будет складываться и сжиматься так, чтобы образовалось бесконечное множество фрактальных слоев. Странный аттрактор не может возникнуть. А хаос?
Не один астроном сделал карьеру, обойдя стороной динамические системы, но не таков был Энон. Он родился в Париже в 1931 г., всего на несколько лет позже Лоренца. Энон тоже являл собой тип ученого, которого неумолимо влечет к математике. Ему нравилось решать небольшие конкретные вопросы, которые могли быть привязаны к определенным физическим проблемам, — по его собственному выражению, «не то, что делают современные математики». Когда компьютеры стали доступны даже любителям, машина появилась и у Энона. Собрав ее собственноручно, ученый наслаждался компьютерными забавами. Кстати, задолго до описываемых событий он исследовал особенно сложную проблему из области гидродинамики. Она касалась сферических кластеров — шаровидных скоплений звезд, в которых число светил доходило до миллиона. Это древнейшие и наиболее интересные объекты ночного неба. Плотность их внушает изумление. Как такое огромное количество звезд сосуществует в ограниченном объеме пространства и эволюционирует во времени, астрономы пытались выяснить в течение всего XX века.
С точки зрения динамики, сферический кластер, включающий в себя множество тел, представляет собой довольно важный предмет исследования. Когда речь идет о паре объектов, особых сложностей не возникает — Ньютон полностью разрешил эту проблему: каждое из пары тел, например Земля и Луна, описывает идеальный эллипс вокруг общего центра тяжести системы. Но добавьте хотя бы еще один обладающий тяготением объект, и все изменится. Задача, в которой фигурируют три тела, уже более чем трудна. Как показал Пуанкаре, в большинстве случаев она неразрешима. Можно просчитать орбиты для некоторого временного интервала, а с помощью мощных вычислительных машин удается проследить их в течение более длительного периода, пока не возникнут помехи, однако уравнения аналитически не решаются, т. е. долгосрочный прогноз поведения системы из трех тел выполнить невозможно. Устойчива ли Солнечная система? Конечно, ей присуще подобное свойство, но даже сегодня никто не уверен в том, что орбиты некоторых планет не изменятся до неузнаваемости, заставив небесные тела навсегда покинуть Солнце.
Система вроде сферического кластера слишком запутанна, чтобы подходить к ней столь прямолинейно, как к вопросу о трех телах. Однако динамику кластера можно изучить, прибегнув к некоторым хитростям. Вполне допустимо, в частности, рассматривать единичные звезды, путешествующие в пространстве, в некотором усредненном гравитационном поле с определенным центром тяготения. Время от времени две звезды подойдут друг к другу достаточно близко, и в таком случае каждое из взаимодействующих тел следует рассматривать уже по отдельности. Астрономы поняли, что сферические кластеры вообще не должны являться устойчивыми: внутри них обычно образуются так называемые бинарные звездные системы, в которых звезды парами перемещаются по небольшим компактным орбитам. Когда с подобной системой сталкивается третья звезда, одна из трех, как правило, получает резкий толчок. Со временем энергия, полученная ею благодаря такому взаимодействию, достигнет уровня, достаточного для того, чтобы звезда набрала скорость, позволяющую вырваться из кластера. Таким образом одно из тел покидает систему, а пространство кластера после этого слегка сжимается. Когда Энон выбрал кластер темой своей докторской диссертации, он произвольно предположил, что сферическое звездное скопление, изменив свой масштаб, останется внутренне подобным. Произведя расчеты, ученый получил потрясающий результат: ядро кластера «сплющится», приобретая кинетическую энергию и стремясь к бесконечно плотному состоянию. Подобное трудно было вообразить. Да и данные исследования кластеров, полученные к тому времени, не подтверждали этот вывод. Однако теория Энона, впоследствии названная гравитационно-термальным коллапсом, постепенно овладевала умами ученых.
Читать дальшеИнтервал:
Закладка: