Владимир Сурдин - Разведка далеких планет

Тут можно читать онлайн Владимир Сурдин - Разведка далеких планет - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство ФИЗМАТЛИТ, год 2011. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Сурдин - Разведка далеких планет краткое содержание

Разведка далеких планет - описание и краткое содержание, автор Владимир Сурдин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Мечта каждого астронома — открыть новую планету. Раньше это случалось редко: одна — две за столетие. Но в последнее время планеты открывают часто: примерно по одной большой планете в неделю, ну а мелких — по сотне за ночь! В книге рассказано о том, как велись и ведутся поиски больших и маленьких планет в Солнечной системе и вдали от нее, какая техника для этого используется, что помогает и что мешает астрономам в этой работе. Рассказано, как дают планетам имена и какие открытия ждут нас впереди. В приложении приведены точные данные о планетах, созвездиях и крупнейших телескопах.

Книга предназначена старшеклассникам, учителям и студентам, а также всем любителям астрономии.

На лицевой стороне переплета: Меркурий, Венера и Луна над австралийским комплексом радиотелескопов АТСА (Australia Telescope Compact Array) близ города Наррабри, Новый Южный Уэльс. Фото: Graeme L. White и Glen Cozens.

На обратной стороне переплета: телескоп «Вильям Гершель» диаметром 4,2 м, установленный на о. Пальма (Канарские о-ва). Лазерный луч используется для работы системы адаптивной оптики.

На форзаце: возможно, так с высоты птичьего полета выглядит поверхность Тритона, крупнейшего спутника Нептуна. Справа — планета, слева вдали — Солнце. Рисунок: ESO/Calgada L.

На нахзаце: возможно, так выглядит поверхность Плутона, покрытая наледями замерзшего метана. Слева — Харон, справа — Солнце, которое светит там в 1000 раз слабее, чем на Земле. Рисунок: ESO/Calgada L.

Разведка далеких планет - читать онлайн бесплатно ознакомительный отрывок

Разведка далеких планет - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Сурдин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 55 Схема регистрации сверхжестких космических гамма квантов - фото 116
Рис. 5.5. Схема регистрации сверхжестких космических гамма — квантов, порождающих в земной атмосфере черенковское свечение. Атмосфера планеты играет роль сцинтиллятора — прозрачной среды в которой рождаются черенковские фотоны.

Неоценима роль Земли и при наблюдении космических нейтрино. В нашей стране в недрах горы Андырчи в Приэльбрусье сооружен один из крупнейших в мире нейтринных телескопов, в котором Земле отведено сразу несколько важных функций. Во — первых, она служит фильтром, не пропускающим к телескопу потоки космических лучей. Во — вторых, земной шар используется в качестве мишени, взаимодействуя с которой нейтрино рождают потоки мюонов. Эти мюоны регистрируются счетчиками нейтринного телескопа. Сравнивая потоки нейтрино, приходящие сверху и снизу, можно определить сечение взаимодействия нейтрино с земным шаром, иначе говоря, измерить коэффициент пропускания планеты — фильтра.

Рис 56 Четыре коллектора света составляющих черенковский телескоп VERITAS - фото 117
Рис. 5.6. Четыре коллектора света, составляющих черенковский телескоп VERITAS.

Такие подземные установки по регистрации нейтрино работают уже в нескольких странах. Одна из самых совершенных расположена близ города Садбери (пров. Онтарио, Канада). В шахте Крайгтон на глубине 2070 м находится прозрачный плексигласовый шар диаметром 12 м, заполненный 1000 т тяжелой воды (D 20). Вокруг него расположены 9600 ФЭУ, направленные в центр шара и регистрирующие вспышки черенковского света от быстрых электронов, рождающихся в реакции

v e+ D → е -+ р + р.

Вся эта конструкция помещена в еще больший резервуар с 7300 т обычной, но очень чистой воды, играющей роль защиты от радиоактивного излучения горных пород. Именно на Садберийской нейтринной обсерватории (SNO) в 2002 г. была решена так называемая проблема солнечного нейтрино — слабость наблюдаемого потока электронных нейтрино из недр Солнца по сравнению с теоретически рассчитанным потоком, который должен быть, если в глубинах Солнца идут термоядерные реакции. Оказалось, что по пути от Солнца к Земле часть электронных нейтрино превращается в нейтрино других сортов — мюонные и тау, а их пока не умеет регистрировать ни один детектор, кроме детектора SNO. Открытие взаимных превращений (осцилляций) нейтрино разных сортов (поколений) заставило физиков взяться за модернизацию теории элементарных частиц.

Рис 57 Схема обнаружения нейтрино пронизывающего земной шар Установка - фото 118
Рис. 5.7. Схема обнаружения нейтрино, пронизывающего земной шар. Установка такого типа — в полном смысле слова «планета — телескоп».

Масштаб Садберийского прибора поражает, но эта установка не самая крупная среди нейтринных детекторов. Например, японский детектор «Супер — Камиоканде», также опущенный глубоко под землю, имеет резервуар диаметром 40 м, заполненный 22 000 т обычной воды и окруженный 11 200 фотоумножителями. Вес всей установки 50 000 т. Но не нужно думать, что астрофизики страдают гигантоманией. Неуловимые нейтрино, с легкостью пронизывающие Солнце и Землю, просто не замечают на своем пути установки меньшего масштаба.

Развивая идею «планета — телескоп», некоторые научные коллективы решили вообще отказаться от искусственных резервуаров гигантского объема, а использовать вместо этого природные резервуары — озера и моря. Глубоководный водоем может быть и фильтром (не нужна шахта!), и сцинтиллятором (не нужен дорогой резервуар). Требуются только ФЭУ, которые следует опустить «во глубину» прозрачных вод и следить там, в абсолютной темноте, за слабенькими вспышками черенковского света, сопровождающими ливни элементарных частиц, рожденных нейтрино в толще воды. Такие установки уже начали работать на озере Байкал, где детекторы опущены на глубину 1 км, а также в Средиземном море — у берегов Франции (эксперимент ANTARES) на глубине 2,5 км и у побережья Греции (эксперимент NESTOR) на глубине 4 км. Если смотреть в перспективу, то весьма привлекательными «планетами — телескопами» для исследователей нейтрино со временем могут стать Европа, спутник Юпитера, и Энцелад, спутник Сатурна, с их подледными океанами глубиной в десятки километров.

Кстати, лед — тоже отличная среда для сооружения гигантских черенковских детекторов, и этим уже воспользовались астрофизики. В ледяном куполе Антарктиды, прямо на Южном полюсе, в течение последних нескольких лет проводился эксперимент AMANDA (Antarctic Muon And Neutrino Detector Array — массив мюонных и нейтринных детекторов в Антарктике). Во льду были проплавлены вертикальные скважины и в них на глубину от 1,5 до 2 км опущены гирлянды фотоумножителей. Под давлением вышележащих слоев лед приобретает чрезвычайно высокую прозрачность, к тому же он обладает очень низким радиационным фоном и хорошо охлаждает ФЭУ, уменьшая уровень шумов. Эксперимент оказался успешным, и теперь установка расширяется вглубь и вширь, получив новое имя — IceCube Neutrino Observatory. Глубина увеличилась до 2,5 км, а площадь, на которой по ледяному куполу распределены гирлянды детекторов, достигнет 1 км 2. Так что объем ледяного черенковского телескопа будет равен одному кубическому километру! Как у ядра небольшой кометы.

А теперь вспомним, что в воде и во льду лучше всего распространяется все же не свет, а звук. Именно поэтому для рыб слух важнее зрения. Еще в 1977 г. советские физики Г. А. Аскарьян и Б. А. Долгошеин предложили проект акустической регистрации нейтрино. Ливень вторичных частиц, рожденных при взаимодействии нейтрино с ядрами атомов воды, должен вызывать в воде короткий щелчок, длительностью всего около 100 мкс. Зарегистрировав звук из нескольких точек, можно определить направление прихода нейтрино. Особый интерес к этому методу появился в связи с тем, что в годы «холодной войны» на дне океанов были раскинуты обширные сети чувствительных гидрофонов для обнаружения вражеских подводных лодок. Например, база США в Атлантике вблизи Багамских островов занимает подводное пространство площадью 250 км 2. Сейчас там планируется создать подводную акустическую установку с 52 гидрофонами для обнаружения нейтрино. Еще более грандиозный проект DUMAND (Deep Underwater Muon And Neutrino Detector) развивался с 1976 по 1995 гг. в Тихом океане близ острова Гавайи. Там на глубине 5 км предполагалось развернуть объединенную систему оптической и акустической регистрации нейтрино. Сейчас проект остановлен, но его наработки и часть оборудования используются в других, менее дорогостоящих, проектах подводных нейтринных детекторов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Сурдин читать все книги автора по порядку

Владимир Сурдин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Разведка далеких планет отзывы


Отзывы читателей о книге Разведка далеких планет, автор: Владимир Сурдин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x