Денис Шевчук - Менеджмент: конспект лекций

Тут можно читать онлайн Денис Шевчук - Менеджмент: конспект лекций - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Денис Шевчук - Менеджмент: конспект лекций краткое содержание

Менеджмент: конспект лекций - описание и краткое содержание, автор Денис Шевчук, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге в доступной форме излагаются основы менеджмента – науки и практики управления. Менеджмент – научно—практическая и учебная дисциплина, посвященная проблемам управления в организации (на предприятии), на государственном, муниципальном и международном уровне. Описаны вопросы к арьеры и техника трудоустройства.

Для студентов и преподавателей вузов, слушателей институтов повышения квалификации, структур второго образования, курсов менеджмента и бизнес—школ. А также для широкого круга читателей, желающих познакомиться с современным менеджментом, от учащихся и учителей старших классов школ до менеджеров, экономистов, инженеров, самостоятельно повышающих квалификацию.

Автор книги – Заместитель генерального директора INTERFINANCE (ООО «ИНТЕРФИНАНС МВ», www.deniskredit.ru), имеет опыт работы в банках, коммерческих и государственных структурах (в т. ч. на руководящих должностях), преподавания различных дисциплин в ведущих ВУЗах Москвы (экономические, юридические, технические, гуманитарные), два высших образования (экономическое и юридическое), более 50 публикаций (статьи и книги).

Менеджмент: конспект лекций - читать онлайн бесплатно ознакомительный отрывок

Менеджмент: конспект лекций - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Денис Шевчук
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Аналогичным образом можно изобразить и ограничения по труду.

Таким образом, ограничения по труду, как и ограничения по материалу, изображаются в виде треугольника. Этот треугольник также получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей третьей строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х 1, соответствующую стульям, в точке (45,0). Это означает, что если все трудовые ресурсы пустить на изготовление стульев, то будет сделано 45 стульев. Та же прямая пересекает ось Х 2, соответствующую столам, в точке (0,30). Это означает, что если всех рабочих поставить на изготовление столов, то будет сделано 30 столов. Для всех точек внутри треугольника выполнено неравенство, а не равенство – часть рабочих будет простаивать.

Мы видим, что очевидного решения нет – для изготовления 80 стульев есть материал, но не хватает рабочих рук, а для производства 30 столов есть рабочая сила, но нет материала, Значит, надо изготавливать и то, и другое. Но в каком соотношении?

Чтобы ответить на этот вопрос, надо «совместить» графики, получив область возможных решений, а затем проследить, какие значения принимает целевая функция на этом множестве.

Таким образом, множество возможных значений объемов выпуска стульев и столов ( Х 1, Х 2 ), или, в других терминах, множество А , задающее ограничения на параметр управления в общей оптимизационной задаче, представляет собой пересечение двух треугольников, т. е. выпуклый четырехугольник. Три его вершины очевидны – это (0,0), (45,0) и (0,20). Четвертая – это пересечение двух прямых – границ треугольников, т. е. решение системы уравнений

5 Х 1 + 20 Х 2 = 400,

10 Х 1 + 15 Х 2 = 450.

Из первого уравнения: 5 Х 1 = 400 – 20 Х 2, Х 1 = 80 – 4 Х 2. Подставляем во второе уравнение:

10 (80 – 4 Х 2) + 15 Х 2 = 800 – 40 Х 2 + 15 Х 2 = 800 – 25 Х 2 = 450,

следовательно, 25 Х 2 = 350, Х 2 = 14, откуда Х 1 = 80 – 4 х 14 = 80–56 =24. Итак, четвертая вершина четырехугольника – это (24, 14).

Надо найти максимум линейной функции на выпуклом многоугольнике (в общем случае линейного программирования – максимум линейной функции на выпуклом многограннике, лежащем в конечномерном линейном пространстве). Основная идея линейного программирования состоит в том, что максимум достигается в вершинах многоугольника. В общем случае – в одной вершине, и это – единственная точка максимума. В частном – в двух, и тогда отрезок, их соединяющий, тоже состоит из точек максимума.

Целевая функция 45 Х 1 + 80 Х 2 принимает минимальное значение, равное 0, в вершине (0,0). При увеличении аргументов эта функция увеличивается. В вершине (24,14) она принимает значение 2200. При этом прямая 45 Х 1 + 80 Х 2 = 2200 проходит между прямыми ограничений 5 Х 1 + 20 Х 2 = 400 и 10 Х 1 + 15 Х 2 = 450, пересекающимися в той же точке. Отсюда, как и из непосредственной проверки двух оставшихся вершин, вытекает, что максимум целевой функции, равный 2200, достигается в вершине (24,14).

Таким образом, оптимальный выпуск таков: 24 стула и 14 столов. При этом используется весь материал и все трудовые ресурсы, а прибыль равна 2200 долларам США.

Двойственная задача. Каждой задаче линейного программирования соответствует так называемая двойственная задача. В ней по сравнению с исходной задачей строки переходят в столбцы, неравенства меняют знак, вместо максимума ищется минимум (или, наоборот, вместо минимума – максимум). Задача, двойственная к двойственной – эта сама исходная задача. Сравним исходную задачу (слева) и двойственную к ней (справа):

45 Х 1 + 80 Х 2 → max, 400 W 1 + 450 W 2 → min,

5 Х 1 + 20 Х 2 ≤ 400, 5 W 1 + 10 W 2 ≥ 45,

10 Х 1 + 15 Х 2 ≤ 450, 20 W 1 + 15 W 2 ≥ 80,

Х 1 ≥ 0, W 1 ≥ 0,

Х 2 ≥ 0. W 2 ≥ 0.

Почему двойственная задача столь важна? Можно доказать, что оптимальные значения целевых функций в исходной и двойственной задачах совпадают (т. е. максимум в исходной задаче совпадает с минимумом в двойственной). При этом оптимальные значения W 1 и W 2 показывают стоимость материала и труда соответственно, если их оценивать по вкладу в целевую функцию. Чтобы не путать с рыночными ценами этих факторов производства, W 1 и W 2 называют «объективно обусловленными оценками» сырья и рабочей силы.

Линейное программирование как научно—практическая дисциплина.Из всех задач оптимизации задачи линейного программирования выделяются тем, что в них ограничения – системы линейных неравенств или равенств. Ограничения задают выпуклые линейные многогранники в конечном линейном пространстве. Целевые функции также линейны.

Впервые такие задачи решались советским математиком Л.В. Канторовичем (1912–1986) в 1930–х годах как задачи производственного менеджмента с целью оптимизации организации производства и производственных процессов, например, процессов загрузки станков и раскройки листов материалов. После второй мировой войны аналогичными задачами занялись в США. В 1975 г. Т. Купманс (1910–1985, родился в Нидерландах, работал в основном в США) и академик АН СССР Л.В. Канторович были награждены Нобелевскими премиями по экономике.

Рассмотрим несколько типовых задач линейного программирования.

Задача о диете (упрощенный вариант).Предположим для определенности, что необходимо составить самый дешевый рацион питания цыплят, содержащий необходимое количество определенных питательных веществ (для простоты, тиамина Т и ниацина Н).

Пищевая ценность рациона (в калориях) должна быть не менее заданной. Пусть для простоты смесь для цыплят изготавливается из двух продуктов – К и С . Известно содержание тиамина и ниацина в этих продуктах, а. также питательная ценность К и С (в калориях). Сколько К и С надо взять для одной порции куриного корма, чтобы цыплята получили необходимую им дозу веществ Н и Т и калорий (или больше), а стоимость порции была минимальна? Исходные данные для расчетов приведены в табл.1.

Задача линейного программирования имеет вид:

3,8 К + 4,2 С → min,

0,10 К + 0,25 С ≥ 1,00,

1,00 К + 0,25 С ≥ 5,00,

110,00 К + 120,00 С ≥ 400,00,

К ≥ 0,

С ≥ 0.

Ради облегчения восприятия четыре прямые обозначены номерами (1) – (4). Прямая (1) – это прямая 1,00 К + 0,25 С = 5,00 (ограничение по веществу Н). Она проходит, как и показано на рисунке, через точки (5,0) на оси абсцисс и (0,20) на оси ординат. Обратите внимание, что допустимые значения параметров (К, С ) лежат выше прямой (1) или на ней, в отличие от ранее рассмотренных случаев в предыдущей производственной задаче линейного программирования.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Денис Шевчук читать все книги автора по порядку

Денис Шевчук - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Менеджмент: конспект лекций отзывы


Отзывы читателей о книге Менеджмент: конспект лекций, автор: Денис Шевчук. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x