Денис Шевчук - Менеджмент: конспект лекций

Тут можно читать онлайн Денис Шевчук - Менеджмент: конспект лекций - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Денис Шевчук - Менеджмент: конспект лекций краткое содержание

Менеджмент: конспект лекций - описание и краткое содержание, автор Денис Шевчук, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге в доступной форме излагаются основы менеджмента – науки и практики управления. Менеджмент – научно—практическая и учебная дисциплина, посвященная проблемам управления в организации (на предприятии), на государственном, муниципальном и международном уровне. Описаны вопросы к арьеры и техника трудоустройства.

Для студентов и преподавателей вузов, слушателей институтов повышения квалификации, структур второго образования, курсов менеджмента и бизнес—школ. А также для широкого круга читателей, желающих познакомиться с современным менеджментом, от учащихся и учителей старших классов школ до менеджеров, экономистов, инженеров, самостоятельно повышающих квалификацию.

Автор книги – Заместитель генерального директора INTERFINANCE (ООО «ИНТЕРФИНАНС МВ», www.deniskredit.ru), имеет опыт работы в банках, коммерческих и государственных структурах (в т. ч. на руководящих должностях), преподавания различных дисциплин в ведущих ВУЗах Москвы (экономические, юридические, технические, гуманитарные), два высших образования (экономическое и юридическое), более 50 публикаций (статьи и книги).

Менеджмент: конспект лекций - читать онлайн бесплатно ознакомительный отрывок

Менеджмент: конспект лекций - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Денис Шевчук
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Прямая (2) – это прямая 110,00 К + 120,00 С = 400,00 (ограничение по калориям). Обратим внимание, что в области неотрицательных С она расположена всюду ниже прямой (1). Действительно, это верно при К = 0, прямая (1) проходит через точку (0,20), а прямая (2) – через расположенную ниже точку (0, 400/120). Точка пересечения двух прямых находится при решении системы уравнений

1,00 К + 0,25 С = 5,00,

110,00 К + 120,00 С = 400,00.

Из первого уравнения К = 5–0,25 С . Подставим во второе: 110 (5–0,25 С ) + 120 С = 400, откуда 550 – 27,5 С + 120 С = 400. Следовательно, 150 = – 92,5 С , т. е. решение достигается при отрицательном С . Это и означает, что при всех положительных С прямая (2) лежит ниже прямой (1). Значит, если выполнено ограничения по Н, то обязательно выполнено и ограничение по калориям. Мы столкнулись с новым явлением – некоторые ограничения с математической точки зрения могут оказаться лишними. С точки зрения менеджера они необходимы, отражают существенные черты постановки задачи, но в данном случае внутренняя структура задачи оказалась такова, что ограничение по калориям не участвует в формировании допустимой области параметров и нахождении решения.

Прямая (4) – это прямая 0,1 К + 0,25 С = 1 (ограничение по веществу Т). Она проходит, как и показано на рисунке, через точки (10,0) на оси абсцисс и (0,4) на оси ординат. Обратите внимание, что допустимые значения параметров ( К, С ) лежат выше прямой (4) или на ней, как и для прямой (1).

Следовательно, область допустимых значений параметров ( К, С ) является неограниченной сверху. Из всей плоскости она выделяется осями координат (лежит в первом квадранте) и прямыми (1) и (4) (лежит выше этих прямых, а также включает граничные отрезки). Область допустимых значений параметров, т. е. точек ( К, С ), можно назвать «неограниченным многоугольником». Минимум целевой функции 3,8 К + 4,2 С может достигаться только в вершинах этого «многоугольника». Вершин всего три. Это пересечения с осями абсцисс (10,0) и ординат (0,20) прямых (1) и (4) (в каждом случае из двух пересечений берется то, которое удовлетворяет обоим ограничениям). Третья вершина – это точка А пересечения прямых (1) и (4), координаты которой находятся при решении системы уравнений

0,10 К + 0,25 С = 1,00,

1,00 К + 0,25 С = 5,00.

Из второго уравнения К = 5–0,25 С , из первого 0,10 (5–0,25 С ) + 0,25 С = 0,5–0,025 С + 0,25 С = 0,5 + 0,225 С = 1, откуда С = 0,5/0,225 = 20/9 и К = 5–5/9 = 40/9. Итак, А = (40/9; 20/9).

Прямая (3) – это прямая, соответствующая целевой функции 3,8 К + 4,2 С . Она проходит между прямыми (1) и (4), задающими ограничения, и минимум достигается в точке А , через которую и проходит прямая (3). Следовательно, минимум равен 3,8х40/9 + 4,2х20/9 = 236/9. Задача об оптимизации смеси полностью решена.

Двойственная задача, построенная по описанным выше правилам, имеет приведенный ниже вид (мы повторяем здесь и исходную задачу об оптимизации смеси, чтобы наглядно продемонстрировать технологию построения двойственной задачи):

3,8 К + 4,2 С → min, W 1 + 5 W 2 + 400 W 3 → max,

0,10 К + 0,25 С ≥ 1,00, 0,1 W 1 + 1,10 W 2 + 110 W 3 ≤ 3,8,

1,00 К + 0,25 С ≥ 5,00, 0,25 W 1 + 0,25 W 2 + 120 W 3 ≤ 4,2,

110,00 К + 120,00 С ≥ 400,00, W 1 ≥ 0,

К ≥ 0, W 2 ≥ 0,

С ≥ 0. W 3 ≥ 0.

Минимальное значение в прямой задаче, как и должно быть, равно максимальному значению в двойственной задаче, т. е. оба числа равны 236/9. Интерпретация двойственных переменных: W 1 – «стоимость» единицы вещества Т, а W 2 – «стоимость» единицы вещества Н, измеренные «по их вкладу» в целевую функцию. При этом W 3 = 0, поскольку ограничение на число калорий никак не участвует в формировании оптимального решения. Итак, W 1 , W 2, W 3 – это т. н. объективно обусловленные оценки (по Л.В. Канторовичу) ресурсов (веществ Т и Н, калорий).

Планирование номенклатуры и объемов выпуска.Вернемся к организации производства. Предприятие может выпускать автоматические кухни (вид кастрюль), кофеварки и самовары. В табл.2 приведены данные о производственных мощностях, имеющихся на предприятии (в штуках изделий).

При этом штамповка и отделка проводятся на одном и том же оборудовании. Оно позволяет штамповать за заданное время или 20000 кухонь, либо 30000 кофеварок, либо и то, и другое, не в меньшем количестве. А вот сборка проводится на отдельных участках.

Задача линейного программирования имеет вид:

Х 1 ≥ 0, Х 2 ≥ 0, Х 3 ≥ 0, (0)

Х 1 / 200 + Х 2 / 300 + Х 3 / 120 ≤ 100, (1)

Х 1 / 300 + Х 2 / 100 + Х 3 / 100 ≤ 100, (2)

Х 1 / 200 ≤ 100, (3)

Х 2 / 120 ≤ 100, (4)

Х 3 / 80 ≤ 100, (5)

F = 15 Х 1 + 12 Х 2 + 14 Х 3 → max.

Здесь:

(0) – обычное в экономике условие неотрицательности переменных,

(1) – ограничение по возможностям штамповки (выраженное для облегчения восприятия в процентах),

(2) – ограничение по возможностям отделки,

(3) – ограничение по сборке для кухонь,

(4) – то же для кофемолок,

(5) – то же для самоваров (как уже говорилось, все три вида изделий собираются на отдельных линиях).

Наконец, целевая функция F – общая прибыль предприятия.

Заметим, что неравенство (3) вытекает из неравенства (1), а неравенство (4) – из (2). Поэтому неравенства (3) и (4) можно из формулировки задачи линейного программирования исключить.

Отметим сразу любопытный факт. Как будет установлено, в оптимальном плане Х 3 = 0, т. е. самовары выпускать невыгодно.

Методы решения задач линейного программирования.Методы решения задач линейного программирования относятся к вычислительной математике, а не к экономике и менеджменту. Однако инженеру, менеджеру и экономисту полезно знать о свойствах интеллектуального инструмента, которым он пользуется.

С ростом мощности компьютеров необходимость применения изощренных математических методов снижается, поскольку во многих случаях время счета перестает быть лимитирующим фактором, оно весьма мало (доли секунд). Поэтому разберем лишь три метода.

Простой перебор. Возьмем некоторый многомерный параллелепипед, в котором лежит многогранник, задаваемый ограничениями. Как его построить? Например, если имеется ограничение типа 2 Х 1 + 5 Х 2 ≤ 10, то, очевидно, 0 ≤ Х 1 ≤ 10/2 = 5 и 0 ≤ Х 2 ≤ 10/5 = 2. Аналогичным образом от линейных ограничений общего вида можно перейти к ограничениям на отдельные переменные. Остается взять максимальные границы по каждой переменной. Если многогранник, задаваемый ограничениями, неограничен, как было в задаче о диете, можно похожим, но несколько более сложным образом выделить его «обращенную» к началу координат часть, содержащую решение, и заключить ее в многомерный параллелепипед (подробнее см. Шевчук Д.А. Управление качеством. – М.: ГроссМедиа: РОСБУХ, 2008).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Денис Шевчук читать все книги автора по порядку

Денис Шевчук - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Менеджмент: конспект лекций отзывы


Отзывы читателей о книге Менеджмент: конспект лекций, автор: Денис Шевчук. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x