Денис Шевчук - Менеджмент: конспект лекций

Тут можно читать онлайн Денис Шевчук - Менеджмент: конспект лекций - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Денис Шевчук - Менеджмент: конспект лекций краткое содержание

Менеджмент: конспект лекций - описание и краткое содержание, автор Денис Шевчук, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге в доступной форме излагаются основы менеджмента – науки и практики управления. Менеджмент – научно—практическая и учебная дисциплина, посвященная проблемам управления в организации (на предприятии), на государственном, муниципальном и международном уровне. Описаны вопросы к арьеры и техника трудоустройства.

Для студентов и преподавателей вузов, слушателей институтов повышения квалификации, структур второго образования, курсов менеджмента и бизнес—школ. А также для широкого круга читателей, желающих познакомиться с современным менеджментом, от учащихся и учителей старших классов школ до менеджеров, экономистов, инженеров, самостоятельно повышающих квалификацию.

Автор книги – Заместитель генерального директора INTERFINANCE (ООО «ИНТЕРФИНАНС МВ», www.deniskredit.ru), имеет опыт работы в банках, коммерческих и государственных структурах (в т. ч. на руководящих должностях), преподавания различных дисциплин в ведущих ВУЗах Москвы (экономические, юридические, технические, гуманитарные), два высших образования (экономическое и юридическое), более 50 публикаций (статьи и книги).

Менеджмент: конспект лекций - читать онлайн бесплатно ознакомительный отрывок

Менеджмент: конспект лекций - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Денис Шевчук
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Оценки метода наименьших квадратов – это такие значения a* и b* , при которых функция f(a,b) достигает минимума по всем значениям аргументов. Чтобы найти эти оценки, надо вычислить частные производные от функции f(a,b) по аргументам a и b, приравнять их 0, затем из полученных уравнений найти оценки:

Имеем:

Преобразуем правые части полученных соотношений. Вынесем за знак суммы общие множители 2 и (-1). Затем рассмотрим слагаемые. Раскроем скобки в первом выражении, получим, что каждое слагаемое разбивается на три. Во втором выражении также каждое слагаемое есть сумма трех. Значит, каждая из сумм разбивается на три суммы. Имеем:

Приравняем частные производные 0. Тогда в полученных уравнениях можно сократить множитель (-2). Поскольку

(1)

уравнения приобретают вид

Следовательно, оценки метода наименьших квадратов имеют вид

В силу соотношения (1) оценку а* можно записать в более симметричном виде:

Эту оценку нетрудно преобразовать и к виду

Следовательно, восстановленная функция, с помощью которой можно прогнозировать и интерполировать, имеет вид

x*(t) = a*(t – t ср )+ b*.

Обратим внимание на то, что использование t ср в последней формуле ничуть не ограничивает ее общность. Сравним с моделью вида

x k = c t k + d + e k , k = 1,2,…,n.

Ясно, что

Аналогичным образом связаны оценки параметров:

Для получения оценок параметров и прогностической формулы нет необходимости обращаться к какой—либо вероятностной модели. Однако для того, чтобы изучать погрешности оценок параметров и восстановленной функции, т. е. строить доверительные интервалы для a*, b* и x*(t), подобная модель необходима.

Непараметрическая вероятностная модель. Пусть значения независимой переменной t детерминированы, а погрешности e k , k = 1,2,…,n, – независимые одинаково распределенные случайные величины с нулевым математическим ожиданием и дисперсией δ2 неизвестной исследователю.

В дальнейшем неоднократно будем использовать Центральную Предельную Теорему (ЦПТ) теории вероятностей для величин e k , k = 1,2,…,n (с весами), поэтому для выполнения ее условий необходимо предположить, например, что погрешности e k , k = 1,2,…,n, финитны или имеют конечный третий абсолютный момент. Однако заострять внимание на этих внутриматематических «условиях регулярности» нет необходимости.

Асимптотические распределения оценок параметров.Из формулы (2) следует, что

Согласно ЦПТ оценка b* имеет асимптотически нормальное распределение с математическим ожиданием b и дисперсией δ2/n оценка которой приводится ниже.

Из формул (2) и (5) вытекает, что

Последнее слагаемое во втором соотношении при суммировании по i обращается в 0, поэтому из формул (2–4) следует, что

Формула (6) показывает, что оценка α* является асимптотически нормальной с математическим ожиданием α и дисперсией

Отметим, что многомерная нормальность имеет быть, когда каждое слагаемое в формуле (6) мало сравнительно со всей суммой, т. е.

Из формул (5) и (6) и исходных предположений о погрешностях вытекает также несмещенность оценок параметров.

Несмещенность и асимптотическая нормальность оценок метода наименьших квадратов позволяют легко указывать для них асимптотические доверительные границы (аналогично границам в предыдущей главе) и проверять статистические гипотезы, например, о равенстве определенным значениям, прежде всего 0.

Асимптотическое распределение прогностической функции.Из формул (5) и (6) следует, что

т. е. рассматриваемая оценка прогностической функции является несмещенной. Поэтому

При этом, поскольку погрешности независимы в совокупности и M(ei)=0, то

Таким образом,

Итак, оценка x*(t) является несмещенной и асимптотически нормальной. Для ее практического использования необходимо уметь оценивать остаточную дисперсию M(ei2)=δ2.

Оценивание остаточной дисперсии. В точках t k , k = 1,2,…,n, имеются исходные значения зависимой переменной x k и восстановленные значения x*(t k ). Рассмотрим остаточную сумму квадратов

В соответствии с формулами (5) и (6)

Найдем математическое ожидание каждого из слагаемых:

Из сделанных ранее предположений вытекает, что при

имеем

следовательно, по закону больших чисел статистика SS/n является состоятельной оценкой остаточной дисперсии δ2.

Получением состоятельной оценкой остаточной дисперсии завершается последовательность задач, связанных с рассматриваемым простейшим вариантом метода наименьших квадратов. Не представляет труда выписывание верхней и нижней границ для прогностической функции:

где погрешность δ(t) имеет вид

Здесь p – доверительная вероятность, U(p), как и в главе 4 – квантиль нормального распределения порядка (1+р)/2 , т. е.

При p= 0,95 (наиболее применяемое значение) имеем U(p) = 1,96. Для других доверительных вероятностей соответствующие значения квантилей можно найти в статистических таблицах (см., например, наилучшее в этой сфере издание [9]).

Сравнение параметрического и непараметрического подходов.Во многих литературных источниках рассматривается параметрическая вероятностная модель метода наименьших квадратов. В ней предполагается, что погрешности имеют нормальное распределение. Это предположение позволяет математически строго получить ряд выводов. Так, распределения статистик вычисляются точно, а не в асимптотике, соответственно вместо квантилей нормального распределения используются квантили распределения Стьюдента, а остаточная сумма квадратов SS делится не на n, а на ( n–2 ) . Ясно, что при росте объема данных различия стираются.

Рассмотренный выше непараметрический подход не использует нереалистическое предположение о нормальности погрешностей. Распределения, встречающиеся в задачах менеджмента, как правило, не являются нормальными [1]. Платой за отказ от нормальности является асимптотический характер результатов. В случае простейшей модели метода наименьших квадратов оба подхода дают практически совпадающие рекомендации. Это не всегда так, не всегда два подхода бают близкие результаты. Например, в задаче обнаружения выбросов методы, опирающиеся на нормальное распределение, нельзя считать обоснованными, и обнаружено это было с помощью непараметрического подхода.

Общие принципы.Кратко сформулируем несколько общих принципов построения, описания и использования эконометрических методов анализа данных. Во—первых, должны быть четко сформулированы исходные предпосылки, т. е. полностью описана используемая вероятностно—статистическая модель. Во—вторых, не следует принимать предпосылки, которые редко выполняются на практике. В—третьих, алгоритмы расчетов должны быть корректны с точки зрения математико—статистической теории. В—четвертых, алгоритмы должны давать полезные для практики выводы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Денис Шевчук читать все книги автора по порядку

Денис Шевчук - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Менеджмент: конспект лекций отзывы


Отзывы читателей о книге Менеджмент: конспект лекций, автор: Денис Шевчук. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x