Денис Шевчук - Менеджмент: конспект лекций

Тут можно читать онлайн Денис Шевчук - Менеджмент: конспект лекций - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Денис Шевчук - Менеджмент: конспект лекций краткое содержание

Менеджмент: конспект лекций - описание и краткое содержание, автор Денис Шевчук, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге в доступной форме излагаются основы менеджмента – науки и практики управления. Менеджмент – научно—практическая и учебная дисциплина, посвященная проблемам управления в организации (на предприятии), на государственном, муниципальном и международном уровне. Описаны вопросы к арьеры и техника трудоустройства.

Для студентов и преподавателей вузов, слушателей институтов повышения квалификации, структур второго образования, курсов менеджмента и бизнес—школ. А также для широкого круга читателей, желающих познакомиться с современным менеджментом, от учащихся и учителей старших классов школ до менеджеров, экономистов, инженеров, самостоятельно повышающих квалификацию.

Автор книги – Заместитель генерального директора INTERFINANCE (ООО «ИНТЕРФИНАНС МВ», www.deniskredit.ru), имеет опыт работы в банках, коммерческих и государственных структурах (в т. ч. на руководящих должностях), преподавания различных дисциплин в ведущих ВУЗах Москвы (экономические, юридические, технические, гуманитарные), два высших образования (экономическое и юридическое), более 50 публикаций (статьи и книги).

Менеджмент: конспект лекций - читать онлайн бесплатно ознакомительный отрывок

Менеджмент: конспект лекций - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Денис Шевчук
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Применительно к задаче восстановления зависимостей это означает, что целесообразно применять непараметрический подход, что и сделано выше.

Пример оценивания по методу наименьших квадратов.Пусть даны n =6 пар чисел ( t k , x k ) , k = 1,2,…,6, представленных во втором и третьем столбцах табл.1. В соответствии с формулами (2) и (4) выше для вычисления оценок метода наименьших квадратов достаточно найти суммы выражений, представленных в четвертом и пятом столбцах табл.1.

В соответствии с формулой (2) b* =26,83, а согласно формуле (4)

Следовательно, прогностическая формула имеет вид

Следующий этап анализа данных – оценка точности приближения функции методом наименьших квадратов. Сначала рассматриваются т. н. восстановленные значения

Это те значения, которые полученная в результате расчетов прогностическая функция принимает в тех точках, в которых известны истинные значения зависимой переменной x i .

Вполне естественно сравнить восстановленные и истинные значения. Это и сделано в шестом – восьмом столбцах табл. 1. Для простоты расчетов в шестом столбце представлены произведения α*t, седьмой отличается от шестого добавлением константы 9,03 и содержит восстановленные значения. Восьмой столбец – это разность третьего и седьмого.

Непосредственный анализ восьмого столбца табл.1 показывает, что содержащиеся в нем числа сравнительно невелики по величине по сравнению с третьим столбцом (на порядок меньше по величине). Кроме того, знаки «+» и «-» чередуются. Эти два признака свидетельствуют о правильности расчетов. При использовании метода наименьших квадратов знаки не всегда чередуются. Однако если сначала идут только плюсы, а потом только минусы (или наоборот, сначала только минусы, а потом только плюсы), то это верный показатель того, что в вычислениях допущена ошибка.

Верно следующее утверждение.

Теорема.

Однако сумма по восьмому столбцу дает 0,06, а не 0. Незначительное отличие от 0 связано с ошибками округления при вычислениях. Близость суммы значений зависимой переменной и суммы восстановленных значений – практический критерий правильности расчетов.

В последнем девятом столбце табл.1 приведены квадраты значений из восьмого столбца. Их сумма – это остаточная сумма квадратов SS = 13,64. В соответствии со сказанным выше оценками дисперсии погрешностей и их среднего квадратического отклонения являются

Рассмотрим распределения оценок параметров. Оценка b* имеет асимптотически нормальное распределение с математическим ожиданием b и дисперсией, которая оценивается как 2,27/6=0,38 (здесь считаем, что 6 – «достаточно большое» число). Оценкой среднего квадратического отклонения является 0,615. Следовательно, при доверительной вероятности 0,95 доверительный интервал для параметра b имеет вид (26,83 – 1,96 . 0,615; 26,83 + 1,96 . 0,615) = (25,625; 28,035).

В формулах для дисперсий участвует величина

Подставив численные значения, получаем, что

Дисперсия для оценки а* коэффициента при линейном члене прогностической функции оценивается как 2,27/63,1=0,036, а среднее квадратическое отклонение – как 0,19. Следовательно, при доверительной вероятности 0,95 доверительный интервал для параметра а имеет вид (3,14 – 1,96 . 0,19; 3,14 + 1,96 , 0,19) = (2,77; 3,51).

Прогностическая формула с учетом погрешности имеет вид (при доверительной вероятности 0,95)

В этой записи сохранено происхождение различных составляющих. Упростим:

Например, при t = 12 эта формула дает

Следовательно, нижняя доверительная граница – это 44,095, а верхняя доверительная граница – это 49,325.

Насколько далеко можно прогнозировать? Обычный ответ таков – до тех пор, пока сохраняется тот стабильный комплекс условий, при котором справедлива рассматриваемая зависимость. Изобретатель метода наименьших квадратов Карл Гаусс исходил из задачи восстановления орбиты астероида (малой планеты) Церера. Движение подобных небесных тел может быть рассчитано на сотни лет. А вот параметры комет (например, срок возвращения) не поддаются столь точному расчету, поскольку за время пребывания в окрестности Солнца сильно меняется масса кометы. В социально—экономической области горизонты надежного прогнозирования еще менее определены. В частности, они сильно зависят от решений центральной власти.

Чтобы выявить роль погрешностей в прогностической формуле, рассмотрим формальный предельный переход

Тогда слагаемые 9,03; 1/6; 5,67 становятся бесконечно малыми, и

Таким образом, погрешности составляют около

от тренда (математического ожидания) прогностической функции. В социально—экономических исследованиях подобные погрешности считаются вполне приемлемыми.

3.3.3. Основы линейного регрессионного анализа

Метод наименьших квадратов, рассмотренный в простейшем случае, допускает различные обобщения. Например, метод наименьших квадратов дает алгоритм расчетов, если исходные данные – по—прежнему набор n пар чисел (t k , x k ), k = 1,2,…,n, где t k – независимая переменная (например, время), а x k – зависимая (например, индекс инфляции), а восстанавливать надо не линейную зависимость, а квадратическую:

Следует рассмотреть функцию трех переменных

Оценки метода наименьших квадратов – это такие значения параметров a*, b* и с* , при которых функция f(a,b,с) достигает минимума по всем значениям аргументов. Чтобы найти эти оценки, надо вычислить частные производные от функции f(a,b,с) по аргументам a, b и с, приравнять их 0, затем из полученных уравнений найти оценки: Имеем:

Приравнивая частную производную к 0, получаем линейное уравнение относительно трех неизвестных параметров a, b, c:

Приравнивая частную производную по параметру b к 0, аналогичным образом получаем уравнение

Наконец, приравнивая частную производную по параметру с к 0, получаем уравнение

Решая систему трех уравнений с тремя неизвестными, находим оценки метода наименьших квадратов.

Другие задачи, рассмотренные в предыдущем пункте (доверительные границы для параметров и прогностической функции и др.), также могут быть решены. Соответствующие алгоритмы более громоздки. Для их записи полезен аппарат матричной алгебры. Для реальных расчетов используют соответствующие компьютерные программы.

Раздел эконометрики, посвященный восстановлению зависимостей, называется регрессионным анализом. Термин «линейный регрессионный анализ» используют, когда рассматриваемая функция линейно зависит от оцениваемых параметров (от независимых переменных зависимость может быть произвольной). Теория оценивания неизвестных параметров хорошо развита именно в случае линейного регрессионного анализа. Если же линейности нет и нельзя перейти к линейной задаче, то, как правило, хороших свойств от оценок ожидать не приходится.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Денис Шевчук читать все книги автора по порядку

Денис Шевчук - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Менеджмент: конспект лекций отзывы


Отзывы читателей о книге Менеджмент: конспект лекций, автор: Денис Шевчук. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x