Шинтан Яу - Теория струн и скрытые измерения Вселенной
- Название:Теория струн и скрытые измерения Вселенной
- Автор:
- Жанр:
- Издательство:Питер
- Год:2012
- Город:Санкт-Петербург
- ISBN:978-5-459-00938-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Шинтан Яу - Теория струн и скрытые измерения Вселенной краткое содержание
Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.
Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.
Теория струн и скрытые измерения Вселенной - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Еще одной особенностью многообразий Калаби-Яу и, в частности, их геометрии, является то, что для них решения уравнения Дирака — в этом случае соответствующие безмассовым частицам — совпадают с решениями другого уравнения, известного как уравнение Лапласа, работать с которым намного проще. Наибольшее преимущество в данном случае заключается в том, что решения уравнения Лапласа можно получить — и, следовательно, распознать безмассовые частицы, — в принципе, и не решая каких-либо дифференциальных уравнений. Нет необходимости знать точную геометрию или метрику многообразий Калаби-Яу. Вместо этого все необходимое можно получить из топологических «данных» о многообразии Калаби-Яу, содержащихся в матрице 4×4, называемой ромбом Ходжа. О ромбах Ходжа речь пойдет в следующей главе, поэтому сейчас я скажу только то, что эта топологическая уловка позволяет нам весьма успешно собрать воедино все безмассовые частицы.
Впрочем, нахождение частиц является только началом. В конце концов, физика — это нечто большее, чем простой набор частиц. Кроме этого существуют еще и силы или взаимодействия между частицами. В теории струн струнные петли, движущиеся через пространство, могут либо соединяться, либо расщепляться, и их склонность к одному или другому процессу зависит от струнной константы связи , выступающей мерой взаимодействия между струнами.
Расчет сил взаимодействия между частицами является весьма кропотливой задачей, требующей для своего решения использования почти всего арсенала инструментов теории струн, так что работа над одной моделью на практике занимает не меньше года. И вновь суперсимметрия делает наши вычисления менее накладными. Также может помочь и математика, поскольку этот тип проблем уже давно знаком геометрам, в результате чего у них появилось множество инструментов, которыми можно воспользоваться. Петля, свободно движущаяся и колеблющаяся в пространстве Калаби-Яу, может самопроизвольно превратиться в восьмерку и затем расщепиться на две отдельные петли. И напротив, две отдельные петли могут объединиться в восьмерку. При прохождении через пространство-время эти петли заметают риманову поверхность, точно определяющую картину взаимодействий между струнами, хотя до появления на сцене теории струн математикам не приходило в голову каким-то образом связать ее с физикой.
Насколько же близко могут подойти ученые в своих предсказаниях к свойствам реального мира, получив в руки все эти инструменты? Этой теме будет посвящена девятая глава, а сейчас мы рассмотрим статью Канделаса, Горовица, Строминджера и Виттена, вышедшую в 1985 году и представляющую собой первую серьезную попытку показать способность теории струн при помощи компактификаций Калаби-Яу описывать реальный мир. [73] P. Candelas, G. Horowitz, A. Strominger, and E. Witten, “Vacuum Configurations for Superstrings,” Nuclear Physics В 258 (1985): 46–74.
Уже тогда физики были способны получать хорошее соответствие теории с практикой. В частности, их модель предсказала оптимальную для случая четырех измерений суперсимметрию, обозначаемую как N=1 , что означает инвариантность пространства относительно четырех симметричных преобразований, которые можно рассматривать как четыре различных вида вращений. Это само по себе уже являлось большим успехом, так как в случае получения ими максимального значения суперсимметрии N = 8, что соответствовало бы наиболее сложной ситуации — инвариантности относительно двадцати двух различных симметричных операций, — это наложило бы на физику столь сильные ограничения, что единственным допустимым вариантом Вселенной стало бы плоское пространство без какой-либо кривизны, в существовании которой, конечно, сомнений быть не может, или любых других неоднородностей типа черных дыр, делающих жизнь, по крайней мере, физиков-теоретиков, столь интересной. В случае, если бы Канделас и его коллеги потерпели неудачу на этом фронте и было бы получено доказательство, что данные шестимерные пространства не способны обладать необходимой суперсимметрией, компактификация в теории струн, по крайней мере, для данного примера, потерпела бы неудачу.
Эта статья стала огромным шагом вперед и в настоящее время рассматривается как этап первой струнной революции, хотя в некоторых вопросах, например в предсказании количества поколений элементарных частиц, она промазала мимо цели. В стандартной модели, принятой в физике элементарных частиц, — модели, на протяжении уже нескольких десятилетий задающей тон в этой области физики и включающей в себя электромагнитное, слабое и сильное взаимодействия, — все элементарные частицы, из которых состоит вещество, разделены на три поколения. Каждое из поколений состоит из двух кварков, электрона или одного из его аналогов (мюона или таона) и нейтрино, которое также бывает трех видов — электронное, мюонное и таонное. Частицы, принадлежащие к первому поколению, наиболее привычны для нашего мира, являясь одновременно наиболее стабильными и наименее массивными. Частицы из третьего поколения обладают наименьшей стабильностью и наибольшей массой, тогда как члены второго поколения находятся примерно посередине. К глубокому сожалению для Канделаса и компании, многообразия Калаби-Яу, с которыми они работали, дали на выходе четыре поколения элементарных частиц. Они ошиблись лишь на единицу, но в этом случае разница между тремя и четырьмя была огромной.
В 1984 году Строминджер и Виттен начали активно работать над решением задачи о числе поколений и в конце концов обратились ко мне с вопросом о существовании многообразий Калаби-Яу, которые приводили бы не к четырем, а к трем поколениям элементарных частиц. Горовиц в общении со мной также подчеркнул важность этого момента. Итак, существовала необходимость в многообразии с эйлеровой характеристикой, равной 6 или -6, поскольку, как показал Виттен за несколько лет до этого, для определенного класса многообразий Калаби-Яу, обладающих, помимо всего прочего, нетривиальной фундаментальной группой или нестягиваемой петлей, число поколений равно модулю эйлеровой характеристики, деленному на два. Один из вариантов этой формулы фигурировал в часто цитируемой статье, выпущенной «четверкой» в 1985 году.
Мне удалось выкроить немного времени на то, чтобы заняться этой проблемой, в том же году во время перелета из Сан-Диего в Чикаго по пути в Аргоннскую национальную лабораторию, проводившую одну из первых крупных конференций по теории струн. Мне предстояло выступить с докладом, и время, проведенное на борту самолета, я планировал посвятить подготовке к своему выступлению. Мне пришло в голову, что я, возможно, смогу прояснить вопрос о трех поколениях, который мои друзья-физики считают столь важным. Я оказался прав и по окончанию полета смог представить искомое решение — многообразие Калаби-Яу с эйлеровой характеристикой, равной -6, что сделало это многообразие первым, приводящим к трем поколениям элементарных частиц, как и требовалось в рамках стандартной модели. Хотя это и не было огромным прыжком вперед, тем не менее стало своеобразным «маленьким шагом» — как представил его Виттен. [74] Edward Witten (IAS), e-mail letter to author, July 24, 2008.
Интервал:
Закладка: