Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью
- Название:(Не)совершенная случайность. Как случай управляет нашей жизнью
- Автор:
- Жанр:
- Издательство:Livebook/Гаятри
- Год:2010
- Город:Москва
- ISBN:978-5-9689-0171-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью краткое содержание
В книге «(Не)совершенная случайность. Как случай управляет нашей жизнью» Млодинов запросто знакомит всех желающих с теорией вероятностей, теорией случайных блужданий, научной и прикладной статистикой, историей развития этих всепроникающих теорий, а также с тем, какое значение случай, закономерность и неизбежная путаница между ними имеют в нашей повседневной жизни.
Эта книга — отличный способ тряхнуть стариной и освежить в памяти кое-что из курса высшей математики, истории естественнонаучного знания, астрономии и статистики для тех, кто изучал эти дивные дисциплины в вузах; понятно и доступно изложенные основы теории вероятностей и ее применимости в житейских обстоятельствах (с многочисленными примерами) для тех, кому не посчастливилось изучать их специально; наконец, профессиональный и дружелюбный подсказчик грызущим гранит соответствующих наук в данный момент.
(Не)совершенная случайность. Как случай управляет нашей жизнью - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

В 1680 г. Вселенную вблизи нашей Солнечной системы прочертила комета, причем так близко, что крошечной частички солнечного света, который она отразила, хватило для того, чтобы комета отчетливо светилась в ночном небе. Впервые комета была замечена в ноябре; несколько месяцев она оставалась объектом пристального наблюдения, ее траекторию вычерчивали самым подробным образом. В 1687 г. Исаак Ньютон воспользуется этими данными в качестве примера действия закона обратных квадратов для силы тяготения. А одной ночью, когда на небе не было ни единого облачка, на крошечном клочке швейцарской земли под названием Базель другой ученый, которому предначертано было прославиться, тоже не отрывал от кометы взгляда. Этот юный богослов смотрел на яркий, дымчатый свет кометы и понял, что хочет заниматься не теологией, а математикой {88} 88 Более подробные сведения о семье Бернулли и жизни Якоба: E.S. Pearson, ed., The History of Statistics in the 17th and 18th Centuries against the Changing Background of Intellectual, Scientific and Religious Thought: Lectures by Karl Pearson Given at University College, London, during the Academic Sessions 1921–1933 (New York: Macmillan, 1978), pp. 221-37; J.O. Fleckenstein, «Johann und Jakob Bernoulli», in Elemente der Mathematik, Beihefte zur Zeitschrift, no. 6 (Basel, 1949); and Stephen Stigler, «The Bernoullis of Basel», Journal of Econometrics 75, no. l (1996): 7-13.
. Решение это не только круто поменяло жизнь Якоба, но и определило сферу деятельности многочисленных представителей семейства Бернулли: в период между рождением Якоба и 1800 г., то есть 150 лет, почти половина родившихся представителей семейства Бернулли оказались людьми одаренными, восемь человек стали известными математиками, а трое (Якоб, его младший брат Иоганн, сын Иоганна Даниил) на сегодняшний момент считаются величайшими учеными.
В то время кометы в глазах теологов да и общества в целом выглядели знамениями божьего гнева, а уж если судить по этой комете, то Бог должно быть был зол как никогда — хвост кометы растянулся на полнеба. Один проповедник назвал комету «небесным предостережением Всемогущего и Святого Господа, начертанным и воздвигнутым перед слабыми и лишенными святости детьми человеческими». Она предвещает, продолжал проповедник, «значительные перемены в плане духовном или мирском» для страны или города {89} 89 Quoted in Pearson, The History of Statistics in the 17th and 18th Centuries, p. 224.
. Якоб Бернулли придерживался иного мнения. В 1681 г. он опубликовал брошюру под названием «Новый метод: как посредством некоторых основополагающих законов объяснить путь кометы или хвостатой звезды и предсказать ее появление».
В этом плане Бернулли на шесть лет опередил Ньютона. По крайней мере, опередил бы, если его теория оказалась бы верной. Но верной она не была, однако произнесенное во всеуслышание заявление о том, что кометы подчиняются законам природы, а не прихоти божьей, было довольно-таки смелым, особенно если помнить, что годом ранее — почти через пятьдесят лет после осуждения Галилея — профессор математики из Базельского университета, Питер Мегерлин, неоднократно подвергался нападкам богословов за то, что принял гелиоцентрическую систему Коперника — ему запретили преподавать ее в университете. Между учеными и богословами Базеля произошел раскол, Бернулли же целиком и полностью встал на сторону ученых.
Вскоре талант Бернулли был замечен научным сообществом, и когда в конце 1686 г. Мегерлин умер, его место профессора математики занял Бернулли. К тому времени Бернулли трудился над задачами, связанными с азартными играми. Наибольшее влияние на него оказал голландский ученый и в частности математик Христиан Гюйгенс, который не только усовершенствовал телескоп и первым разглядел кольца Сатурна, создал первые маятниковые часы (основываясь на идеях Галилея), способствовал развитию волновой теории света, но и, вдохновленный мыслями Паскаля и Ферма, написал учебник по вероятности.
Для Бернулли учебник Гюйгенса стал откровением. Что однако не помешало Бернулли увидеть ограниченность теории Гюйгенса. Она могла удовлетворять потребностям игроков в азартные игры, но оставалась бесполезной в других, более насущных сферах жизни. Как можно точно определить вероятность достоверности свидетельских показаний? Или вероятность того, кто — Карл I, король Англии, Шотландии и Ирландии, или Мария I, королева Шотландии — лучше всего играл в гольф? (Оба любили этот вид спорта.) Бернулли считал: чтобы стало возможным рациональное принятие решения, должен быть надежный, подкрепленный математически способ определения вероятностей. Его взгляд отражал культуру тех времен: ведение дел способом, согласующимся с вероятностными ожиданиями, считалось признаком человека здравомыслящего. Но, как считал Бернулли, не одна только субъективность ограничивала ту теорию случайности. По его мнению, теория не действовала в ситуациях незнания, где вероятности различных исходов могли быть определены в принципе, но не на практике. Именно это я и обсуждал с Моше, именно с этим и столкнулся Джаггер: каковы шансы того, что неидеальная кость выдаст 6? Каковы ваши шансы заразиться чумой? Какова вероятность того, что ваш нагрудный щит выдержит удар шпагой противника? Бернулли считал: и в субъективной, и в неопределенной ситуациях будет истинным «безумием» надеяться на некое предварительное знание, то есть знание априори относительно вероятностей, описанных в учебнике Гюйгенса {90} 90 Stephen Stigler, The History of Statistics: The Measurement of Uncertainty before 1900 (Cambridge, Mass.: Harvard University Press, 1986), p. 65.
.
Бернулли видел ответ на вопрос таким же, каким позднее его увидит Джаггер: вместо того, чтобы зависеть от данных нам вероятностей, мы должны определить их сами, посредством наблюдений. Будучи математиком, Бернулли добивался точности мысли. Допустим, перед вами вращаются несколько рулеточных колес. Как точно сможете вы определить неявные вероятности и с какой долей уверенности? Об этом мы поговорим в следующей главе, однако это не те вопросы, на которые Бернулли смог ответить. Вместо них он нашел ответ на вопрос, тесно связанный с вышеупомянутыми: насколько четко неявные вероятности отражаются в реальных результатах? Бернулли принял за очевидное то, что мы вполне оправданно ожидаем: с увеличением числа попыток наблюдаемые периодичности с большей или меньшей точностью отразят неявные вероятности. Бернулли конечно же не был первым, кто так считал. Однако он стал первым, кто формально рассмотрел данную проблему, перевел идею в плоскость доказательства и выразил в количественной форме, задавая вопрос: сколько попыток необходимо и насколько уверенными мы можем быть? Он также стал одним из первых, кто оценил важность нового изобретения — математического анализа — при решении подобных задач.
Читать дальшеИнтервал:
Закладка: