Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью
- Название:(Не)совершенная случайность. Как случай управляет нашей жизнью
- Автор:
- Жанр:
- Издательство:Livebook/Гаятри
- Год:2010
- Город:Москва
- ISBN:978-5-9689-0171-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Леонард Млодинов - (Не)совершенная случайность. Как случай управляет нашей жизнью краткое содержание
В книге «(Не)совершенная случайность. Как случай управляет нашей жизнью» Млодинов запросто знакомит всех желающих с теорией вероятностей, теорией случайных блужданий, научной и прикладной статистикой, историей развития этих всепроникающих теорий, а также с тем, какое значение случай, закономерность и неизбежная путаница между ними имеют в нашей повседневной жизни.
Эта книга — отличный способ тряхнуть стариной и освежить в памяти кое-что из курса высшей математики, истории естественнонаучного знания, астрономии и статистики для тех, кто изучал эти дивные дисциплины в вузах; понятно и доступно изложенные основы теории вероятностей и ее применимости в житейских обстоятельствах (с многочисленными примерами) для тех, кому не посчастливилось изучать их специально; наконец, профессиональный и дружелюбный подсказчик грызущим гранит соответствующих наук в данный момент.
(Не)совершенная случайность. Как случай управляет нашей жизнью - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Закон Бенфорда был открыт вовсе не неким Бенфордом, а американским астрономом Шимоном Ньюкомбом. Примерно в 1881 г. Ньюкомб заметил, что страницы тетради с логарифмическими таблицами, на которых числа начинались с 1, гораздо сильнее захватаны и истрепаны, чем страницы, на которых числа начинались с 2 и так далее до 9 — те выглядели чистыми, как будто их вообще не открывали. Ньюкомб предположил: те страницы, которые больше всего истрепались, чаще всего и открывали, и на основании своих наблюдений заключил: те ученые, которые до него брали тетрадь, работали с данными, отражавшими подобное распределение цифр. Закон же был назван по фамилии Франка Бенфорда, который в 1938 г. заметил то же самое, что и Ньюкомб, когда просматривал логарифмические таблицы в научно-исследовательской лаборатории «Дженерал Электрик» в г. Скенектади, штат Нью-Йорк. Но ни Ньюкомб, ни Бенфорд не доказали справедливость закона. Это произошло только в 1995 г., и автор доказательства — Тед Хилл, математик из Технологического института Джорджии.
Согласно закону Бенфорда, все девять чисел встречаются совсем не с одинаковой частотой, число 1 встречается в качестве первой цифры в 30% случаев; число 2 — примерно в 18% и так далее, до цифры 9, которая в качестве первой встречается лишь в 5% случаев. Похожий закон, хотя и не столько четко сформулированный, применим к последующим цифрам. Закону Бенфорда подчиняются числа из многих областей, к примеру, из области финансов. В действительности, закон как нельзя лучше подходит для обработки большого массива финансовых показателей на предмет мошенничества.
В одном таком случае был замешан молодой предприниматель Кевин Лоуренс — он умудрился собрать 91 млн долларов на создание сети клубов здоровья, оборудованных по последнему слову техники {82} 82 Scott Kinney, «Judge Sentences Kevin L. Lawrence to 20 Years Prison in Znetix/HMC Stock Scam», Washington State Department of Financial Institutions, press release, November 25, 2003; http://www.dfiwa.gov/sd/kevin_laurence_sentence.htm .
. Набив карманы наличными, Лоуренс развил бурную деятельность, нанял тучу исполнительных директоров и спустил деньги инвесторов так же быстро, как и собрал. И все бы ничего, за исключением одного: Лоуренс со своей когортой большую часть денег тратили не на развитие дела, а на личные нужды. А так как приобретение нескольких домов, двадцати личных яхт, сорока семи автомобилей (в числе которых пять «хаммеров», четыре «феррари», три спортивных «доджа», два шикарных «форда» и «ламборгини дьябло»), двух часов «Ролекс», браслета с бриллиантами в 21 карат, самурайского меча за 200 тыс. долларов и машины для коммерческого производства сладкой ваты едва ли можно было списать как деловые расходы, Лоуренс с дружками попытались увести деньги путем перечисления их по сложной банковской схеме со счета на счет как средства то одной подставной компании, то другой — все с целью создания видимости активно расширяющегося бизнеса. На их несчастье, заподозривший неладное бухгалтер-криминалист Даррелл Доррелл составил список из более чем 70 тыс. номеров (счета и переводы) и, опираясь на закон Бенфорда, сравнил, как распределяются цифры. А распределялись они вразрез с законом {83} 83 Interview with Darrell Dorrell, August 1, 2005.
. Это, конечно же, было только началом расследования, однако дальше история развивалась по известному сценарию, а развязка наступила за день до Дня благодарения 2003 г., когда Кевин Лоуренс, окруженный своими адвокатами и облаченный в светло-голубую тюремную робу, был приговорен к двадцати годам заключения без права досрочного освобождения. Налоговое управление США также изучило закон Бенфорда как способ обнаружения случаев налогового мошенничества. Один исследователь даже применил закон к данным налоговых поступлений от Билла Клинтона за тринадцать лет. Цифры распределились в соответствии с законом {84} 84 Lee Berton, «He's Got Their Number: Scholar Uses Math to Foil Financial Fraud», Wall Street Journal, July 10, 1995.
.
По-видимому, ни нью-йоркские гангстеры, ни те, кто покупал их лотерейные билеты, не замечали в номерах этих самых билетов закономерностей. Но вздумай люди вроде Ньюкомба, Бенфорда или Хилла сыграть в эту лотерею, они могли бы воспользоваться законом Бенфорда и заключить выгодные пари — неплохая прибавка к зарплате ученого.
В 1947 г. ученым из «Рэнд Корпорейшн» понадобилась большая таблица случайных цифр для цели куда как более достойной: найти приблизительные решения определенных математических уравнений с применением способа, метко названного «методом Монте-Карло». Чтобы получить эти цифры, они решили прибегнуть к электронному порождению помех. Но можно ли назвать электронные помехи случайными? Вопрос не менее коварный, чем определение самой случайности.
В 1896 г. американский философ Чарльз Сандерс Пирс писал о том, что «правила и методики, по которым делается случайная выборка, должны быть таковы, чтобы при бесконечном повторении экспериментов в конечном итоге вероятность того или иного результата была равнозначна остальным вариантам при таком же количестве повторений» {85} 85 Charles Sanders Peirce, Max Harold Fisch, and Christian J. W. Kloesel, Writings of Charles S. Peirce: A Chronological Edition (Bloomington: Indiana University Press, 1982), p. 427.
. Это что касается статистического определения вероятности. Альтернативой ему служит субъективное толкование вероятности. При статистическом определении вероятности суждение выносится исходя из того, чем закончилась серия экспериментов, а при субъективном толковании — исходя из того, каким образом эта серия осуществляется. Согласно субъективному толкованию вероятности, число или ряд чисел считаются случайными, если мы не знаем или не можем предсказать ход процесса, в результате которого они появляются.
Разница между двумя определениями гораздо глубже, чем может показаться на первый взгляд. Например, в идеальном мире бросок игральной кости будет случайным по первому определению, но не по второму: вероятности выпадения любой стороны кости равны, но в идеальном мире мы можем воспользоваться точными данными о физических условиях и законах физики, чтобы определить перед каждым броском то, как именно выпадет кость. В полном несовершенства реальном мире бросок кости является случайным по второму определению, не по первому. Объясняется это тем, что, как указал Моше, из-за несовершенства мира кость не выпадет любой из сторон с равной частотностью. Мы же, в силу нашей ограниченности, не имеем предварительных данных о том, какая из сторон кости перед какой имеет преимущество.
Чтобы определить, является ли составленная ими таблица случайной, ученые из «Рэнд Корпорейшн» подвергли ее серии испытаний. При близком рассмотрении оказалось, что в их системе имеются искажения, прямо как у изначально неидеальной игральной кости Моше {86} 86 Rand Corporation, A Million Random Digits with 100,000 Normal Deviates (1955; repr., Santa Monica, Calif.: Rand, 2001), pp. ix-x. See also Lola L. Lopes, «Doing the Impossible: A Note on Induction and the Experience of Randomness», Journal of Experimental Psychology: Learning, Memory, and Cognition 8, no. 6 (November 1982): 626-36.
. Ученые скорректировали таблицу, однако совсем избежать закономерностей так и не смогли. Как сказал Моше, совершенный хаос — это, по иронии судьбы, некое совершенство. И все же числа получились в достаточной степени случайными, чтобы оказаться полезными, и в 1955 г. компания опубликовала их под броским заголовком: «Миллион случайных цифр».
Интервал:
Закладка: