Айзек Азимов - О времени, пространстве и других вещах
- Название:О времени, пространстве и других вещах
- Автор:
- Жанр:
- Издательство:Центрполиграф
- Год:2014
- Город:Москва
- ISBN:978-5-227-04946-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - О времени, пространстве и других вещах краткое содержание
Автор книги рассказывает о появлении первых календарей и о том, как они изменялись, пока не превратились в тот, по которому мы сейчас живем. Вы узнаете много интересного и познавательного о метрических системах, денежных единицах и увлекательных парадоксах физики, химии и математики. Занимательные исторические примеры, иллюстрируя сухие факты, превращаются в яркие рассказы, благодаря живому и образному языку автора.
О времени, пространстве и других вещах - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Чем дальше планета от Солнца и чем быстрее она движется относительно звезд, тем меньше несовпадение между звездным днем и солнечным днем. Для всех планет, расположенных дальше Земли, этим несовпадением можно пренебречь.
Для двух планет, чьи орбиты проходят ближе к Солнцу, чем земная, это расхождение очень велико. Меркурий и Венера оборачиваются, вечно повернувшись одной стороной к Солнцу, и не имеют солнечного дня. Однако они вращаются относительно звезд, поэтому имеют звездный день, который равен периоду их обращения вокруг Солнца (снова относительно звезд).
Если спутники в Солнечной системе (см. главу 7) постоянно обращены одной стороной к основной планете, то их звездный день равен периоду оборота вокруг своей планеты.
Тогда я могу составить таблицу (ничего подобного мне раньше видеть не доводилось) с указанием звездных периодов обращения для каждого из 32 основных небесных тел Солнечной системы. Для наглядности я приведу периоды обращения в минутах и расположу их в таблице в порядке убывания. После каждого названия спутника я приведу в скобках название основной планеты и число, показывающее положение спутника, считая от планеты.
Небесное тело / Звездный день (минуты)
Венера … 324 000
Меркурий … 129 000
Япет (Сатурн-8) … 104 000
Луна (Земля-1) … 39 300
Солнце … 35 060
Гиперион (Сатурн-7) … 30 600
Каллисто (Юпитер-5) … 24 000
Титан (Сатурн-6) … 23 000
Оберон (Уран-5) … 19 400
Титания (Уран-4) … 12 550
Ганимед (Юпитер-4) … 10 300
Плутон … 8650
Тритон (Нептун-1) … 8450
Рея (Сатурн-5) … 6500
Умбриель (Уран-3) … 5950
Европа (Юпитер-3) … 5100
Диона (Сатурн-4) … 3950
Ариель (Уран-2) … 3630
Тефия (Сатурн-3) … 2720
Ио (Юпитер-2) … 2550
Миранда (Уран-1) … 2030
Энселад (Сатурн-2) … 1975
Деймос (Марс-2) … 1815
Марс … 1477
Земля … 1436
Мимас (Сатурн-1) … 1350
Нептун … 948
Амалфея (Юпитер-1) … 720
Уран … 645
Сатурн … 614
Юпитер … 590
Фобос … 460
Эти числа показывают время, которое требуется звездам, чтобы совершить полный круг по небу, относительно системы координат, расположенной на поверхности рассматриваемого небесного тела. Если вы разделите каждое число на 720, то получите количество минут, которые затратит звезда (в районе небесного экватора данного тела), чтобы пройти ширину Солнца или Луны, как это видно с Земли.
Что касается самой Земли, это занимает 2 минуты, и ни секундой больше, хотите — верьте, хотите — нет. На Фобосе (внутренний спутник Марса) — чуть больше, чем полминуты. Звезды будут вертеться по небу со скоростью, в четыре раза превышающей обычную, а надувшийся Марс будет неподвижно висеть в небе. Представляете, какое зрелище!
С другой стороны, наблюдатель на Луне может убедиться, что звезде, чтобы покрыть расстояние, равное видимой ширине Солнца, потребуется 55 минут. Там небесные тела можно изучать на протяжении длительных отрезков времени, значительно более продолжительных, чем на Земле. Никогда не слышал, чтобы этот довод приводился в качестве аргумента для создания лунного телескопа. Этот факт, конечно при условии отсутствия облаков и других неблагоприятных атмосферных явлений, должен сделать лунную обсерваторию перспективой очень привлекательной, ради которой можно было бы пойти и на межпланетное путешествие.
На Венере звезда пройдет расстояние, равное видимой ширине Солнца, за 450 минут, или 7,5 часов. Что ни говори, там можно было бы устроить настоящий рай для астрономов, конечно при условии отсутствия облачности.
Глава 7
Давайте побродим… посмотрим…
В книгах по астрономии (а я их видел, поверьте, немало) обязательно содержится таблица, где перечислены планеты Солнечной системы с указанием диаметра, расстояния от Солнца, времени оборота, альбедо, плотности, числа спутников и т. д.
Я очень люблю числа и отношусь к ним с большим уважением, поэтому всегда с жадностью набрасываюсь на такие таблицы в надежде обнаружить новую информацию. И иногда получаю награду в виде данных о температуре на поверхности, орбитальной скорости и т. д. Однако информации всегда оказывается мало.
Поэтому всякий раз, когда мой мозг начинает настойчиво требовать очередную порцию пищи для размышлений, я даю ему информацию, которой в данный момент располагаю, затем посвящая долгие часы досуга выводам, предположениям и формулировке всевозможных гипотез. (По крайней мере, я занимался этим в те далекие времена, когда еще имел досуг.)
В общем, я и теперь этим занимаюсь, только облекаю результаты своих размышлений в форму очерков и статей. Если хотите, присоединяйтесь ко мне: мы вместе побродим, оглядимся по сторонам и посмотрим, что получится.
Давайте начнем так…
Если верить Ньютону, каждый объект во Вселенной притягивает другой объект с силой (f), пропорциональной произведению масс этих объектов (m 1и m 2), деленной на квадрат расстояния между их центрами (d). Чтобы получить равенство, умножаем результат на гравитационную постоянную (g).
f = gm 1m 2/d 2(формула 1).
Это означает, что существует притяжение между Землей и Солнцем, между Землей и Луной, а также между Землей и всеми планетами, спутниками, метеоритами и каждой песчинкой космической пыли во Вселенной.
К счастью, Солнце так огромно по сравнению со всеми остальными объектами Солнечной системы, что при расчете орбиты Земли или любой другой планеты делается допущение (если рассматриваются только Солнце и конкретная планета), что они одни во Вселенной. Влияние остальных небесных тел может быть подсчитано позже.
Так же можно рассчитать орбиту спутника, предположив, что он и его основная планета одни во Вселенной.
Здесь есть кое-что, на мой взгляд, чрезвычайно интересное. Если Солнце многократно массивнее любой планеты, разве оно не должно оказывать влияние и на спутники, даже находясь на значительно большем расстоянии, чем его родная планета? Если так, каким образом можно оценить это влияние?
Представим себе этот процесс в виде перетягивания каната, на одном конце которого находится спутник со своей планетой, а на другом — Солнце. Как поведет себя Солнце в этом соревновании?
Думаю, что астрономы все это давно подсчитали, однако я ни разу не видел результатов этих расчетов в литературе, поэтому решил выполнить их сам.
Вот что можно сделать. Давайте обозначим массу спутника m, массу его планеты (вокруг которой он вращается) m р, массу Солнца — m s. Расстояние от спутника до планеты у нас будет d р, а расстояние от спутника до Солнца — d s. Гравитационная сила, действующая между спутником и планетой, — f p, а между спутником и Солнцем — f s. Вот и все. Обещаю, больше вы не увидите никаких новых обозначений, по крайней мере в этой главе.
Из формулы 1 видно, что сила притяжения между спутником и планетой:
Читать дальшеИнтервал:
Закладка: