Antonio Duran Guardeno - Ньютон. Закон всемирного тяготения. Самая притягательная сила природы.
- Название:Ньютон. Закон всемирного тяготения. Самая притягательная сила природы.
- Автор:
- Жанр:
- Издательство:Де Агостини
- Год:2015
- ISBN:2409-0069
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Antonio Duran Guardeno - Ньютон. Закон всемирного тяготения. Самая притягательная сила природы. краткое содержание
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики. Ньютон, которого многие считают воплощением рациональности, на самом деле был человеком сложным; он много раз вступал в яростные споры со знаменитыми современниками, такими как Лейбниц или Гук, и с не меньшим рвением занимался наукой, алхимией и теологией.
Прим. OCR: Обозначение sqrt() - используется в тексте для замены отсутствующего в наборе знака "корень квадратный".
Ньютон. Закон всемирного тяготения. Самая притягательная сила природы. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Все это было пропитано той же утилитарной философией, которая проступает в значительной части «Общих схолий» – комментариев, добавленных во второе издание труда: «Но я еще не мог раскрыть, основываясь на явлениях, причину этих свойств притяжения, и я не выдумываю гипотез. Потому что то, что нельзя вывести из феномена, должно называться гипотезой, а гипотезам либо метафизическим, либо физическим, либо оккультных свойств, либо механическим нет места в экспериментальной философии […]. И довольно того, что притяжение существует и действует по законам, истолкованным нами, и является достаточным для всех движений небесных тел и земного океана».
Определить траекторию трех тел, взаимодействующих по закону гравитационного притяжения, – Солнца, Земли и Луны – задача гораздо более сложная, чем когда рассчитывается взаимное движение только двух тел: планеты и Солнца. На самом деле все еще не существует точного решения этой задачи; расчеты оставались крайне сложными вплоть до середины XVIII века, когда математики нашли достаточно удовлетворительные методы для приближенных вычислений. Ньютон остался недоволен тем, как этот вопрос раскрыт в его работе «Математические начала натуральной философии», и годы спустя вернулся к нему, хотя и не сделал значительных прорывов. Ученый признался по этому поводу: «Никогда у меня так не болела голова, как когда я занимался изучением Луны».
Ньютон настаивал на том, что его интересует не сущность притяжения, а его эффекты. Чтобы проиллюстрировать это, приведем точку зрения ученого, описанную в письме Ричарду Бентли в 1693 году:
«Непостижимо, что чистая неодушевленная материя взаимодействует и влияет без посредничества чего-либо, что является материальным, на другую материю без взаимного контакта, как должно было бы быть, если бы притяжение (в значении Эпикура) было бы основным и неотъемлемым для этой материи. И это одна из причин, по которым я выразил Вам свое желание, чтобы Вы не приписывали мне врожденное тяготение. Чтобы притяжение было врожденным, неотъемлемым и существенным в материи, так что тело могло бы воздействовать на другое тело на расстоянии через вакуум, без того, чтобы вмешивалось что-то, через что действие или сила могут передаваться от одного к другому, мне кажется таким огромным абсурдом, что я не верю, что подобное могло бы прийти в голову кому-либо сведущему в философских вопросах. Причиной притяжения должен быть посредник, действующий в соответствии с определенными законами, но является ли он материальным или нематериальным – вопрос, который я оставляю для размышлений моим читателям».
Тот, кто сегодня начнет читать «Математические начала натуральной философии», удивится, не найдя в них и следа анализа бесконечно малых – великого математического изобретения Ньютона, которому посвящена значительная часть следующей главы. Для описания математических размышлений в своем труде ученый предпочел язык синтетической геометрии. Английский гений часто говорил, что использовал вычисления для большей части данных, приведенных в «Математических началах натуральной философии», хотя и представлял их затем на гораздо более строгом языке геометрии. Возможно, Ньютон и утверждал подобное, но документальных доказательств этому нет.
«Математические начала натуральной философии» появились после того, как Ньютон отверг новую аналитическую геометрию и обратился к идеям греков в области синтетической геометрии. Это превращение не может не удивлять, если знать, что вначале Ньютон изучал Декарта, а не Евклида, и с помощью декартовой геометрии обосновал свои расчеты со всей алгоритмической мощью. Между тем так все и было. Начиная с 1680 года Ньютон начал серию работ о синтетической геометрии, которую завершил к 1693 году попытками реставрировать греческие геометрические методы. Эти работы так и остались неопубликованными. Другая возможная причина отсутствия алгебраических расчетов состоит в том, что ученый, приступая к написанию «Математических начал натуральной философии», подумал: если он представит свои мысли на этом новом и недостаточно распространенном языке, понять написанное смогут немногие.
Чтобы принять всерьез научную теорию, необходимо, чтобы она была согласована с наблюдениями, доступными в момент ее разработки, и объясняла самые важные явления. Так как три закона Кеплера выводились из теории гравитации и согласовывались с результатами наблюдений за небесными телами, теория Ньютона, описанная в «Математических началах натуральной философии», переступила через незыблемое научное правило: соответствовать имеющимся данным.
Однако успех физической теории определяется точностью прогнозов, которые она позволяет сделать. Математическая формула всемирного тяготения в виде уравнений позволила делать прогнозы, и экспериментальное подтверждение подняло ее научную состоятельность. Теория гравитации была подтверждена в течение следующих двух веков, и некоторые сюжеты этого триумфа были весьма впечатляющими.
Два таких момента произошли почти одновременно в середине XVIII века. С одной стороны, крупные французские экспедиции в Лапландию и Перу подтвердили предсказание Ньютона о том, что Земля сплюснута у полюсов. С другой стороны, появились лунные таблицы, разработанные немецким астрономом Тобиасом Майером на основании теории тяготения Ньютона и расчетов швейцарского математика Леонарда Эйлера (1753). Английское адмиралтейство было готово заплатить немалую сумму, чтобы помочь своим кораблям определять положение в море.
Однако теорию гравитации ожидали гораздо более сложные испытания, так как каждое открытое тело в Солнечной системе означало новый вызов: следовало доказать, что наблюдаемая траектория совпадает с теоретической. В течение полутора веков после публикации «Математических начал» было обнаружено немало небесных тел. Среди них – планета Уран, открытая Уильямом Гершелем в марте 1781-го, и пояс астероидов между Марсом и Юпитером. Расчетные орбиты этих тел соответствовали наблюдаемым. Каждое совпадение вело к новым успехам, а сама теория завоевывала все большее доверие. Однако наиболее потрясающее ее достижение состояло в том, что исключительно с помощью теоретических выкладок и математических уравнений гравитации удалось предсказать и обнаружить новую планету дальше Урана.
Открытию Нептуна предшествовала угроза провала: по мере того как шли годы после открытия Урана, планета демонстрировала четкую тенденцию к отклонению от орбиты, которую ей приписывали законы Ньютона. Приблизительно в 1790 году с некоторой точностью был намечен путь, по которому должен был следовать Уран, учитывая силу, с которой его притягивало Солнце, и воздействие других планет, в основном Юпитера и Сатурна. В связи с отдаленностью от Солнца Уран имеет очень маленькую угловую скорость – ему нужно более 84 лет, чтобы совершить один оборот; его медленное перемещение и стало причиной того, что только в 1800 году было замечено: Уран отклоняется от орбиты. В расчеты вносились уточнения, которые Уран снова нарушал. В начале 1830-х годов отклонение Урана стало настолько угрожающим, что ученые пришли к выводу: либо он не подчиняется закону тяготения, либо существует нечто, препятствующее выполнению закона. Кто-то выдвинул предположение, что этой помехой может быть планета, расположенная дальше Урана, которая влияет на его орбиту; другие считали, что если бы эта планета существовала, ее уже давно локализовали бы при помощи математических расчетов. Словом, появилась задача определить размер и местоположение объекта, способного воздействовать таким образом на орбиту Урана. Независимо друг от друга необходимые расчеты сделали два астронома: француз Урбен Леверье (1811-1877) и англичанин Джон Адамс (1819-1892). Несмотря на несовершенство астрономических обсерваторий, где они проводили свои исследования, оба попали в цель, и, благодаря настойчивости Леверье, работавшего над проблемой в Берлинской обсерватории, сентябрьской ночью 1846 года была открыта планета, из-за которой смещается орбита Урана. Новая планета получила название Нептун.
Читать дальшеИнтервал:
Закладка: