Михаил Васильев - Металлы и человек
- Название:Металлы и человек
- Автор:
- Жанр:
- Издательство:Советская Россия
- Год:1962
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Васильев - Металлы и человек краткое содержание
Эта книга рассказывает о металлах. И о таких широкоизвестных, как железо, медь, алюминий, и о тех, даже названия которых приходилось слышать не всем: церий, гадолиний, тантал.
Вы сможете прочесть здесь и о волшебных свойствах юного соперника железа — титана, и об уране — новом топливе для электростанций, и о вольфраме — самом прочном и самом тугоплавком в семействе металлов. В общем — обо всех восьмидесяти металлах, которые существуют в природе.
Вместе с тем это книга и о человеке, о его великой власти над металлами. Ведь это человек превращает ржавые камни, руду в металлические изделия.
Это он собрал, в иных случаях буквально по атому, первые крупинки редких и рассеянных элементов и открыл их удивительные свойства. Он облагородил металлы: сделал сталь нержавеющей, слабый алюминий — прочным, желтое золото — разнообразным по цвету. Это человек нашел металлам бесчисленное применение — для сооружений высотных зданий и газопроводов, космических ракет и вагонов метро, для сшивания кровеносных сосудов и превращения солнечных лучей в электрический ток…
Книга эта рассказывает и о борьбе советского народа за металл, о наиболее прогрессивных методах получения и обработки металлов, о важности их экономии и рационального использования.
Книга написана очень популярно. Она рассчитана на то, чтобы ее с пользой для себя прочитал каждый интересующийся современной наукой и техникой и перспективами их развития.
Металлы и человек - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вот, оказывается, каких родственников имеет обычный глинозем — безводная окись алюминия, которую надо получить из бокситов!
Есть много способов получения глинозема. Наиболее часто применяется так называемый щелочный метод. Вот он.
Тяжелые самосвалы выгрузили каменистые глыбы боксита в приемный бункер щековой дробилки. Куски величиной до 40–60 см в поперечнике она разгрызает до размера обычного булыжника. Но и этого еще недостаточно. Эти куски руды поступают в конусные дробилки, из которых руда попадает в шаровые мельницы. И только теперь частицы руды поступают в автоклавы для выщелачивания.
Автоклавы — это высотой с трехэтажный дом стальные цилиндры, способные выдержать большое внутреннее давление. Ведь порошок боксита, который загружают в автоклав и заливают щелочью, лучше всего отдает в раствор соединение алюминия при температуре в добрых пару сотен градусов и давлении не менее десятка атмосфер. И несколько часов бурлит автоклав (пульпу в нем непрерывно перемешивают струей пара, проходящего сквозь всю ее толщу), пока длится процесс «варки» боксита.
Химическая суть этого процесса довольно сложна. Со щелочью вступает в реакцию не только окись алюминия, но и другие вещества, входящие в состав боксита, — кремнезем, окислы титана, ванадия и т. д. Некоторые из образовавшихся веществ вступают в реакции между собой. Однако большая часть получающихся в конечном результате веществ остается в твердом осадке. В растворе же концентрируется соединение алюминия, загрязненное некоторым количеством соединений кремния, фосфора, хрома и т. д.
Скажем сразу: процесс выщелачивания — сложный, тонко регулируемый процесс. На его ход оказывают влияние и состав боксита, и концентрация щелочного раствора, и продолжительность его, и температура, и давление в автоклаве. Кроме того, далеко не всегда весь процесс выщелачивания идет в одном автоклаве. Чаще этот процесс делают непрерывным, соединяя ряд автоклавов друг с другом. Это повышает производительность процесса. Но во всех случаях, чтобы добиться извлечения не менее 85 процентов глинозема из бокситов, нужно высочайшее умение инженеров.
Из варочного автоклава пульпа давлением пара выгружается в самоиспаритель. Давление резко падает, и начинается бурное кипение жидкости. Когда оно прекращается, пульпа направляется на разбавление. Разбавляют пульпу водой, которой перед этим промывали твердый остаток — так называемый красный шлам.
После разбавления алюминатный раствор отделяется от твердого шлама. Для того чтобы мелкие твердые частицы быстрее отделялись от жидкости, в пульпу добавляют так называемые коагулянты — вещества, способствующие слипанию отдельных твердых частиц в крупные хлопья. В качестве такого коагулянта нередко используют обыкновенную ржаную муку. Затем алюминатный раствор фильтруют и направляют на разложение. Твердый остаток после промывки водой для извлечения последних капель раствора вывозят на свалку.
Разложение алюминатных растворов — также очень сложная и тонкая операция. Осуществляется она в гигантских цилиндрических резервуарах, снабженных мешалками, — так называемых декомпозерах. Раствор, имеющий вначале температуру около 60 градусов, постепенно перетекает по системе сифонов из одного резервуара в другой. В ходе процесса в раствор всыпают кристаллы гидроокиси алюминия. Они становятся центрами кристаллизации. Длится этот процесс, называемый технологами выкручиванием, трое-четверо суток.
Конечно, далеко не весь алюминий уходит из раствора. Почти половина его остается в жидкости. Но он не пропадает. Ведь эта жидкость после отделения от нее выделившейся гидроокиси алюминия возвращается в автоклавы для выщелачивания. Так она и циркулирует непрерывно, растворяя в автоклавах глинозем и выделяя его в твердом виде в декомпозере.
Последней операцией получения чистого глинозема является кальцинация — обезвоживание полученного вещества. Осуществляется она в гигантских — метров в 50–75 длиной и метра 1,5–2 диаметром — барабанных вращающихся печах. В поднятый конец этой печи-трубы вводится гидроокись алюминия. Она медленно передвигается по наклону печи вниз, навстречу жаркому пламени мазутных или газовых горелок. В процессе нагревания и прокаливания до температуры в 1250 градусов большая часть гидроокиси превращается в безводную окись алюминия, тот самый корунд, из которого состоят рубины и топазы.
Безводный глинозем — термически стойкий окисел. Температура его плавления равна 2050 градусам. Не просто получить такую температуру в электролизной ванне. И, вероятно, если бы не нашли обходного способа получения алюминия, кроме прямого электролиза расплавленного глинозема, этот металл и сегодня оставался бы драгоценным.
Но способ был найден. Нашли вещество, в котором глинозем хорошо растворяется, и этот-то раствор и подвергают электролизу.
Это вещество называется криолит.
Криолит также является соединением, содержащим в своем составе алюминий. Кроме этого металла, в нем содержатся еще натрий и фтор. Единственное крупное месторождение этого минерала находится в холодной Гренландии. Его внешний вид символичен: он напоминает лед. Кусок криолита, положенный в стакан с водой, почти невидим. Аборигены Гренландии считали долгое время криолит льдом, спрессованным до такой степени, что его уже нельзя растопить. Впрочем, отдельные куски криолита могут иметь снежно-белый, розоватый или даже черный — в зависимости от примесей — цвет.
Криолит встречается в нашей стране на Урале, но его очень мало. Поэтому и криолит приходится приготовлять искусственно.
Сырьем для производства криолита служит плавиковый шпат. Эта горная порода встречается значительно чаще. В Советском Союзе, в частности, большие запасы плавикового шпата имеются в Забайкалье и Средней Азии. Скажем сразу: получение криолита — не менее сложный и тонкий процесс, чем получение глинозема. Как и тот, он начинается с обогащения и последующего измельчения плавикового шпата, в состав которого входят кальций и фтор.
Размельченный в тонкий порошок плавиковый шпат смешивают в специальных дозаторах с концентрированной серной кислотой, и эту смесь направляют в реакционную печь. Это клепанный из котельного железа, герметически закрытый вращающийся барабан. Смесь шпата и кислоты реагирует в нем при температуре около 130 градусов. В результате реакции получается чрезвычайно ядовитый газ — фтористый водород и гипс. Газ выводится через специальный патрубок и по свинцовым трубам идет на очистку, а гипс шнеки выбрасывают из печи.
После очистки фтористый водород растворяют в воде. Производится это в свинцовых башнях. Фтористая кислота разъедает даже стекло— именно с помощью этого вещества вытравляют на нем надписи и рисунки. Свинец — один из немногих материалов, против которых она бессильна, поэтому из него и делают башни. Растворение фтористого водорода в воде сопровождается выделением тепла, а в результате образуется плавиковая кислота.
Читать дальшеИнтервал:
Закладка: