Сергей Зимов - Азбука рисунков природы
- Название:Азбука рисунков природы
- Автор:
- Жанр:
- Издательство:Наука
- Год:1993
- Город:Москва
- ISBN:5-02-003811-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Зимов - Азбука рисунков природы краткое содержание
Почему сетка трещин похожа на сеть городских улиц, а прожилки зеленого листа на речную систему? Как возникает ячеистый рисунок на шкуре жирафа и почему он похож на конвективные ячейки? Есть ли у природы универсальный принцип, обеспечивающий появление упорядоченных форм? Если Вы хотите узнать ответы на эти вопросы, увидеть шедевры природной графики, научиться понимать язык рисунков и конструировать пространственные структуры, если Вам интересна проблема «порядок из хаоса», прочтите эту книгу.
Для широкого круга читателей.
Азбука рисунков природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Рис. 93

Рис. 94
Рассмотрим еще одно условие, связанное с развитием структур, элементы которых в своих вершинах увеличивают («концентрируют») значение потенциала. Оговорим характерную для этого случая особенность встречи элементов. Элемент разворачивается в сторону наибольших значений, поэтому, встретив на своем пути вершину другого элемента, двигающуюся «встречным курсом», он начнет к ней разворачиваться. Соответственно и другая вершина будет стремиться к этой. В итоге два элемента сольются в одну линию (рис. 95).
Теперь зададим, что потенциальный рельеф имеет наклон в сторону кромки CD. В этом случае в рельефе на краю зоны разгрузки стороны АВ будет равновысотный гребень, по которому и пойдет первый элемент, после этого на расстоянии l от этого элемента в потенциальном рельефе образуется новый гребень, по которому пойдет следующий элемент. Как видим, образуется параллельно-полосчатая структура, не отличающаяся от структур, возникающих при схожих условиях в анизотропном потенциальном поле. Однако сходство возможно лишь при прямолинейной границе. Если же у рассматриваемого массива задать другие очертания границы, то возникнут структуры, «заданные» ею (рис. 96). На рис. 97 видна ситуация, когда со временем вершины элементов разворачивались перпендикулярно первоначальному гребню потенциального рельефа. При этом вершины элементов должны стремиться развернуться в сторону больших значений потенциала — развернуться назад. Разворот при этом равновероятен и влево, и вправо. При развороте вершина элемента может встретиться с вершиной соседнего элемента или, если он разворачивается в ту же сторону, двигаться по краю его зоны разгрузки.

Рис. 95

Рис. 96

Рис. 97
Сложные структуры могут возникать и при прямолинейной границе. На прямолинейном гребне потенциального рельефа направление первоначального короткого элемента из-за локальных неоднородностей может немного отклониться от направления гребня (рис. 98, а). Тогда концы этой линии зайдут в области, где значения потенциала меньше, чем на гребне, и будут стремиться развернуться в его сторону (в зону с большими значениями потенциала). Развернувшись, они «по инерции» пересекут гребень и вновь, уже с другой стороны, войдут в область с меньшими значениями потенциала. В итоге образуется волнистая линия (рис. 98, б). После этого в потенциальном рельефе появится новый извилистый гребень. У этого гребня преобладающие вершины будут расположены на участках, наиболее близких к первоначальному гребню. Здесь произойдет заложение нового элемента (рис. 98, б), который должен удлиняться, повторяя очертания извилистого гребня. Но возможны условия, при которых вершина элемента «не впишется» в изгибы гребня и будет отклоняться от его оси. В итоге извилистость элемента при этом будет больше, чем извилистость гребня (рис. 98, в). В свою очередь, следующий элемент станет еще более извилистым. Нарастание извилистости может лимитироваться заданным предельным радиусом кривизны, тогда геометрия структуры стабилизируется. В противном случае произойдет отрыв элемента от границы зоны разгрузки предыдущего или смыкание зон разгрузки (рис. 98, г).

Рис. 98

Рис. 99
Теперь зададим, что рельеф потенциальной поверхности представлен конусом. Условие Е = Р выполнится в его вершине. В зависимости от локальных неоднородностей здесь может возникнуть элемент с двумя или более расходящимися от центра лучами. Каждый из этих лучей будет стремиться развернуться в зону с большими значениями потенциала — назад к вершине конуса. При этом разворот влево или вправо равновероятен. В зависимости от того, как при наращивании значений потенциала взаиморазвернулись элементы, могут возникнуть разные структуры (рис. 99). По мере развития этих структур может проявиться эффект неустойчивого движения элементов по гребню потенциального рельефа — элементы станут извилистыми (см. последний фрагмент рис. 99).
Если потенциальный рельеф представлен перевернутым конусом с основанием, являющимся элементом, который разгружает вокруг себя потенциал, то новый и последующие элементы также будут кольцами, вложенными одно в другое — рисунок параллельных колец. Если же проявится эффект неустойчивости, то, по мере заполнения конуса рисунком, от элемента к элементу будут накапливаться неровности, и к центру рисунка параллельность элементов разрушится (рис. 100). В рассмотренных примерах элементы возле себя полностью разгружают потенциал, поэтому они не могут подходить друг к другу и зарождаться вблизи с другим. Но если на гребне рельефа перевернутого конуса в последнем примере сделать небольшую насечку (нарисовать первый элемент в виде небольшого крючка), то мы при последующем наращивании потенциала получим не систему колец, а спираль (см. рис. 100).

Рис. 100
И вновь немного изменим условия. Пусть потенциальная функция также изотропна — потенциал во всех направлениях одинаков, но при появлении элемента в зоне его разгрузки появляется анизотропность. Элемент разгружает потенциал в параллельном себе направлении и не разгружает в перпендикулярном, т. е. вблизи элемента возможен перпендикулярный ему элемент и невозможен параллельный. В этом случае, если один элемент входит в зону разгрузки другого, возможны два пути — выйти из зоны разгрузки (вернуться в область с высокими значениями потенциала) или развернуться в направлении, перпендикулярном другому элементу. В этом направлении потенциал здесь также не разгружен. Если элемент подходит к другому под очень острым углом, то он скорее выйдет из зоны разгрузки, в противном случае — развернется к этому элементу и подойдет к нему под углом, близким к прямому (рис. 101). Если, удлиняясь, элемент зайдет в область, где перекрываются зоны разгрузки двух других элементов (рис. 102), то дальнейшее его продвижение в этом направлении станет невозможным, так как составляющая потенциала в этом направлении здесь разгружена. Но в направлении, перпендикулярном этому направлению, потенциал не разгружен, поэтому вершина элемента, развернувшись, подойдет к одному из двух элементов (см. рис. 102). С учетом этой особенности при принятых условиях возникнет структура, подобная изображенной на рис. 103. Отметим, что каркас этой структуры был задан таким же, как на рис. 92.
Читать дальшеИнтервал:
Закладка: