Владимир Соломатин - Система гуманитарного и социально-экономического знания
- Название:Система гуманитарного и социально-экономического знания
- Автор:
- Жанр:
- Издательство:Array Литагент «Когито-Центр»
- Год:2001
- Город:Москва
- ISBN:5-9292-0042-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Соломатин - Система гуманитарного и социально-экономического знания краткое содержание
Для преподавателей и студентов юридических, а также иных вузов, где преподаются гуманитарные и социально-экономические дисциплины.
Система гуманитарного и социально-экономического знания - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Подавляющее большинство химических реакций трудноуправляемы. Вместе с тем в науке разработаны методы управления химическими процессами, которые подразделяются на термодинамические и кинетические. Эффективное управление химическими реакциями достигается с помощью катализаторов и ингибиторов, а в последнее время все чаще используют селективные воздействия, так как с созданием лазеров разных типов появилась возможность концентрировать энергию в узком спектральном и временном интервалах.
Среди возможных соединений реагентов есть образования с разной степенью устойчивости. Менее устойчивое соединение обладает большей свободной энергией, поэтому вновь образованная группировка менее устойчивая, чем исходные компоненты. Чтобы преодолеть эту разницу в значениях свободной энергии, необходим дополнительный запас энергии – энергия активации. Она определяет скорость протекания реакции, но ее бывает недостаточно для преодоления барьера, и реакция не идет. Поэтому стараются снизить величину энергии активации путем введения катализаторов (каталитические реакции).
Реакции с утечкой тепла в окружающую среду называют экзотермическими. Например, таковой является реакция соединения углерода с кислородом:
С+О 2=СО 2+94250 кал.
Эндотермическая реакция связана с взятием энергии извне. Основы химической кинетики, изучающей скорость химических реакций и особенности их протекания, были заложены Вант-Гоффом и Аррениусом, открывшими закономерности, связывающие скорости реакций с концентрацией реагентов и температурой. Было выявлено, что скорость реакции зависит от локализации энергии и вероятности ее скопления в рассматриваемой области. Для вступления в химическую реакцию необходимо преодолеть некий энергетический барьер, соответствующий энергии активации, возможность накопления которой сильно зависит от температуры.
Обычно реакция протекает в несколько промежуточных стадий, которые, складываясь, дают суммарную реакцию. Скорость ее зависит от природы реагирующих веществ и от условий, в которых она протекает.
7.4. Эволюционная химия
Эволюционная химия вошла в науку в 50—60-х годах. Под эволюционными проблемами химии понимают процессы самопроизвольного синтеза новых химических соединений, являющихся более сложными и высоко организованными продуктами по сравнению с исходными веществами [88] Концепции современного естествознания / Под ред. В.Н. Лавриненко, В.П. Ратникова . – С. 145.
. Развитие эволюционной химии связано со стремлением ученых понять, как из неорганической материи возникает органическая, а вместе с нею и жизнь. Разработкой этих вопросов занимались Й. Берцелиус, Ю. Либих, П.Э. Бертло и многие другие.
Исследования последнего времени направлены на выяснение как материального состава растительных и животных тканей, так и химических процессов, происходящих в организме.
Перечислим основные проблемы современной эволюционной химии:
• развитие исследований в области металлокомплексного катализа с ориентацией на соответствующие объекты природы;
• моделирование биокатализаторов (в частности, построение моделей ферментов);
• создание иммобилизованных систем (закрепление выделенных из живого организма ферментов на твердой поверхности путем адсорбции);
• изучение и освоение всего каталитического опыта живой природы (формирование фермента, клетки и организма).
Одним из основных понятий эволюционной химии является понятие «самоорганизация». Самоорганизация отражает законы такого существования динамических систем, которое сопровождается их восхождением на все более высокие уровни сложности и системной упорядоченности, или материальной организации [89] Кузнецов В.И., Идлис Г.М., Гутина В.Н. Естествознание. – М., 1996. – С. 203.
.
Существуют два подхода к проблеме самоорганизации предбиологических систем: субстратный и функциональный. Субстратный подход к проблеме биогенеза связан с накоплением информации об отборе химических элементов и структур. Многие из химических элементов участвуют в жизнедеятельности биоорганизмов. Но основу живых систем составляют только шесть элементов (органогенов): углерод, водород, кислород, азот, фосфор и сера (общая их весовая доля в организмах составляет 97,4 %). Еще двенадцать элементов принимают участие в построении компонентов биосистем: натрий, калий, кальций, магний, алюминий, железо, кремний, хлор, медь, цинк, кобальт, никель (весовая доля ≈1,6 %). К этому добавляются около двадцати элементов, участвующих в построении и функционировании узко специфических биосистем.
Известно около восьми миллионов химических соединений, из которых 96 % – органические; ≈300 тысяч – неорганические.
Биохимические условия не играют существенной роли в отборе химических элементов при формировании органических систем. Определяющими факторами здесь выступают требования соответствия между «строительным материалом» и объектами с высокоорганизованной структурой. Эти требования сводятся к отбору элементов, способных к образованию достаточно прочных и энергоемких химических связей, а также лабильных связей. В ходе эволюции отбирались те структуры, которые способствовали резкому повышению активности и селективности действия каталитических групп.
Предполагают, что процесс химической эволюции включал в себя несколько этапов:
• протекание процессов физической и химической адсорбции, которые вносили элементарное упорядочение во взаимное расположение частиц, увеличивали их концентрацию и служили фактором проявления каталитического эффекта;
• создание группировок, обеспечивающих процессы переноса электронов и протонов;
• формирование группировок, дающих энергетическое обеспечение;
• развитие полимерных структур типа РНК и ДНК.
На ранних стадиях химической эволюции отсутствовал катализ. Катализ начинает появляться по мере того, как физические условия приближаются к земным. Отбор активных соединений в природе происходил из тех продуктов, которые получались относительно большим числом химических способов и обладали широким каталитическим спектром.
Суть функционального подхода к осмыслению проблемы предбиологической эволюции состоит в исследовании самих процессов самоорганизации, в выявлении их закономерностей.
Синтез субстратного и функционального подходов к химической эволюции был осуществлен А. Руденко. Так появилась общая теория химической эволюции и биогенеза, которая решает вопросы о движущих силах и механизме эволюционного процесса. Данная теория утверждает, что химическая эволюция – это саморазвитие каталитических систем, а эволюционирующим веществом выступают катализаторы. Происходит естественный отбор тех каталитических центров, которые обладают наибольшей активностью. Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью образуются те пути эволюционных изменений катализатора, на которых происходит максимальное увеличение его абсолютной активности.
Читать дальшеИнтервал:
Закладка: