Владимир Живетин - Методы и средства обеспечения безопасности полета
- Название:Методы и средства обеспечения безопасности полета
- Автор:
- Жанр:
- Издательство:Изд-во Института проблем риска, Информационно-издательский центр «Бон Анца»
- Год:2010
- Город:Москва
- ISBN:978-5-98664-055-6, 978-5-903140-39-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Живетин - Методы и средства обеспечения безопасности полета краткое содержание
Методы и средства обеспечения безопасности полета - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Разработанная и реализованная структура системы осуществления жизненного цикла нового самолета может не в полной мере обеспечивать достижение всех поставленных целей. При этом для создателя и руководителя важно знать степень недостижения цели, зависящую от свойств и качеств подсистем и системы в целом.
Свойство системы характеризуется объективной особенностью, которая проявляется при ее создании и эксплуатации. Качество системы характеризуется совокупностью свойств, обусловливающих ее пригодность выполнять заданную ей цель.
Показатели качества системы, составленные из абсолютных или относительных показателей ее свойств, будем подразделять на функциональные и экономические. Функциональные показатели характеризуют способность системы выполнять возложенные на нее функции для достижения поставленных целей. Экономические показатели характеризуют, с одной стороны, затраты, необходимые для придания системе требуемых качеств, а с другой – экономический эффект при ее функционировании.
Желаемые (потребные) и возможные качества будем задавать условиями, которым должны удовлетворять значения показателей этих качеств. Эти условия называются критериями оценки качествасистемы.
В процессе анализа системы важно определить соответствия возможных, фактических и необходимых свойств системы. Создание любого нового или модернизация старого начинает с этапа целеполагания подсистема (1) (рис. 1.1). Здесь закладываются основные функциональные и экономические показатели объекта, который будет создан. Подсистема (1) наполнена специалистами [19], которые в процессе целеполагания осуществляют (рис. 1.2):
1) формулировку цели путем синтеза средств;
2) эскизный проект, включающий анализ идеи, необходимые средства, ресурсы;
3) оценку необходимых ресурсов: научных, технических, экономических;
4) оценку возможностей, корректировку цели, доработку эскизного проекта, переоценку необходимых ресурсов.

Рис. 1.2
Следующим этапом жизненного цикла самолета, его «рождения», является этап целедостижения. Этот этап реализуется в рамках подсистемы (2), синтезированная структура которой представлена на рис. 1.3. В процессе реализации этого этапа в рамках подсистемы осуществляется анализ возможности реализации цели, включающий:
1) формирование ресурсов и обоснование выходных данных;
2) проведение научно-исследовательских работ – выбор конструктивных параметров;
3) проведение опытно-конструкторских работ, включая натурные испытания опытного образца объекта;
4) проведение летных испытаний объекта – оценка возможностей.
На рис. 1.2 приведены следующие обозначения: R 1 j = R 1 j (Δ R 1 j , δ 1 j ) – ресурсы подсистемы, принадлежащие R 1(целеполагания рис. 1.1); Δ R 1 j – потери ресурсов, реализуемые в подсистеме j , обусловленные погрешностями δ 1 j соответственно.
Обозначения на рис. 1.3 аналогичны приведенным на рис. 1.2, т. е. R 2 j = R 2 j (Δ R 2 j , δ 2 j ).

Рис. 1.3
Этап целереализации в жизненном цикле самолета является замыкающим и вместе с тем самым ответственным. Синтезированная структура этой подсистемы (3) представлена на рис. 1.4. На этом этапе система должна окупить все расходы, произведенные при ее создании.
На этом этапе осуществляются:
1) цель эксплуатации: где, когда, с какой целью объект будет эксплуатироваться;
2) организация эксплуатации, обеспечение безопасности, экономичности, регулярности функционирования объекта;
3) эксплуатация;
4) оценка итогов работы, текущий капитальный ремонт, оценка возможностей.
На рис. 1.4. приведены следующие обозначения: R (2) 1 – ресурсы (финансовые), полученные из банка в кредит; R 3 j = R 3 j (Δ R 3 j , δ 3 j ), где – номера подсистем, осуществляющих целереализацию (рис. 1.1); R 34 – ресурсы получены с рынка 3 от потребителя.

Рис. 1.4
Замыкание жизненного цикла:происходит деструктуризация, достигается критическая область, что приводит к потерям функциональных возможностей, неспособности выполнять поставленную цель, в том числе по причине падения функциональных свойств.
Структурно-функциональное представление на уровне системы реализации жизненного цикла новой техники и отдельных ее подсистем необходимо при построении моделей различного уровня для математического моделирования процессов:
– анализа риска в начальный момент времени t 0;
– анализа риска в упрежденный момент времени t = t 0+τ;
– управления риском и контроля его величины.
Каждый из этапов жизненного цикла характеризуется ресурсами R i и потерями Δ R i , соответствующими данному этапу. Потери Δ R i на каждом из этапов зависят от величины погрешностей δ i , допущенных при проведении работ, а также от величины средств R i
, с использованием которых проводились работы [19]. В итоге получаем суммарные потери ресурсов
Δ R = Ψ( R 1, …, R 4, δ 1, …, δ 4, t ),
где Ψ – оператор преобразования.
Основным звеном в структуре системы реализации жизненного цикла объекта является подсистема целеполагания, которая в свою очередь представляет систему со структурой, представленной на рис. 1.2. Ее основные задачи – осуществление синтеза, формирование идеи с учетом склонностей инвестора и возможностей создателей. При этом происходит оценка потребных ресурсов R р = R р (δ р , Δ R ), где δ р – ошибка в расчетах потребных ресурсов, порождающая погрешность Δ R (δ р ).
Рассмотрим возможные потери на этапах жизненного цикла самолета [18].
1. На этапе научно-исследовательских работ (НИР) потери инвестора обусловлены невозможностью достичь заданную цель, например обеспечить заданные регулярность, экономичность и безопасность полета самолета. Это приводит к потерям тех финансовых средств, которые были затрачены инвестором на проведение таких работ (рис. 1.4). Обозначим их Δ R (1) 22.
Другой крайностью является ситуация, в которой результаты научно-исследовательской работы показали возможность достижения поставленной цели, а этап опытно-конструкторских работ их не подтвердил – возникают потери Δ R (2) 22. Между этими крайними случаями находится проект, позволяющий достичь заданную цель, но который был отклонен.
Читать дальшеИнтервал:
Закладка: