Елена Гороховская - Концепции современного естествознания. Часть 2. Биология и геология
- Название:Концепции современного естествознания. Часть 2. Биология и геология
- Автор:
- Жанр:
- Издательство:Литагент Директмедиа
- Год:2015
- Город:М.-Берлин
- ISBN:978-5-4475-3642-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Елена Гороховская - Концепции современного естествознания. Часть 2. Биология и геология краткое содержание
Концепции современного естествознания. Часть 2. Биология и геология - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Рис. 12. 5. Модель основной материальной и тепловой конвекции в современной Земле (по Маруяме С., 1994). [Геология… с. 44]
Они уже в принципе не могут быть независимыми процессами. Однако поскольку каналы, по которым поднимаются мантийные струи, более узкие, пока нет сейсмотомографических признаков его подъема из нижней мантии.
Очень важен вопрос о стационарности плюмов. Краеугольным камнем гипотезы Вилсона-Моргана было представление о фиксированном положении корней плюмов в подлитосферной мантии и о том, что образование вулканических цепей, с закономерным увеличением возраста построек по мере удаления от современных центров извержений, обязано «прошиванию» движущихся над ними литосферных плит горячими мантийными струями… Однако совершенно бесспорных примеров вулканических цепей гавайского типа не так уж много… Таким образом, в проблеме плюмов остается еще много неясного» [Хаин 2002].
12.5. Геодинамика Е. В. Артюшкова
В геодинамике рассматривается взаимодействие сложных процессов, идущих в коре и мантии. Один из вариантов геодинамики, дающий более сложную картину движения мантии, чем описанная выше (рис. 12.2), разрабатывается членом-корреспондентом РАН Е.В. Артюшковым в его книге «Геодинамика» (М., Наука, 1979). На этом примере видно как переплетаются различные физические и химические модели в реальном геодинамическом описании.
Согласно изложенной в этой книге концепции основным источником энергии, для всех тектонических процессов является процесс гравитационной дифференциации вещества, который происходит в нижней мантии. После отделения от породы нижней мантии тяжелой компоненты (железа и пр.), которая опускается в ядро, «остается смесь твердых веществ, более легкая, чем вышележащая нижняя мантия… Расположение слоя легкого материала под более тяжелым веществом неустойчиво… Поэтому накапливающийся под нижней мантией легкий материал периодически собирается в крупные блоки размером порядка 100 км и всплывает в верхние слои планеты. Из этого материала за время жизни Земли сформировалась верхняя мантия.
Нижняя мантия скорее всего представляет собой первичное, еще не продифференцированное вещество Земли. В процессе эволюции планеты происходит рост ядра и верхней мантии за счет нижней мантии.
Наиболее вероятно, что подъем блоков легкого материала в нижней мантии происходит вдоль каналов 6 6 Такой канал можно рассматривать как вариант упоминавшегося выше «мантийного плюма», как его конкретную модель.
(см. рис. 12.6), в которых температура вещества сильно повышена, а вязкость резко понижена. Повышение температуры связано с выделением большого количества потенциальной энергии при подъеме легкого материала в поле силы тяжести на расстояние ~2000 км. Пройдя через такой канал, легкий материал также сильно нагревается, на величину ~1000°. Поэтому в верхнюю мантию он поступает аномально нагретым и более легким по отношению к окружающим областям.

Рис. 12.6
Благодаря пониженной плотности легкий материал всплывает в верхние слои верхней мантии, вплоть до глубин в 100–200 км и менее. Температура плавления составляющих его веществ с понижением давления сильно падает. Поэтому на небольших глубинах происходит частичное плавление легкого материала и вторичная дифференциация по плотности, после первичной дифференциации на границе ядро – мантия. Выделяющиеся при дифференциации более плотные вещества погружаются в нижние части верхней мантии, а наиболее легкие – всплывают наверх. Совокупность движений вещества в мантии, связанных с перераспределением в ней веществ с различной плотностью в результате дифференциации, можно назвать химической конвекцией.
Подъем легкого материала по каналам в нижней мантии происходит периодически с интервалами примерно в 200 млн. лет. В эпоху его подъема за время в несколько десятков миллионов лет и менее в верхние слои Земли с границы ядро – мантия поступают крупные массы сильно нагретого легкого материала, соответствующие по объему слою верхней мантии мощностью в несколько десятков километров и более. Однако внедрение легкого материала в верхнюю мантию происходит не повсеместно. Каналы в нижней мантии расположены на больших расстояниях друг от друга, порядка нескольких тысяч километров. Они могут образовывать и линейные системы, где каналы располагаются ближе друг к другу, но сами системы также будут сильно удалены друг от друга. Прошедший через каналы легкий материал в верхней мантии всплывает в основном вертикально и заполняет области, расположенные над каналами (см. рис. 12.6), не распространяясь на большие расстояния в горизонтальном направлении. В верхних частях мантии недавно внедрившиеся крупные объемы легкого материала образуют сильно выраженные высокотемпературные неоднородности с повышенной электропроводностью, пониженными скоростями упругих волн и их повышенным затуханием. Горизонтальный масштаб неоднородностей в поперечном направлении ~ 1000 км…
В верхних слоях верхней мантии происходит резкое понижение вязкости ее вещества. Благодаря этому на глубинах в среднем от 100 до 200 км образуется слой пониженной вязкости – астеносфера . Ее вязкость в областях сравнительно холодной мантии η ~ 10 19– 10 20пуаз.
Там, где в астеносфере расположены недавно поднявшиеся с границы ядро-мантия крупные массы легкого нагретого материала, вязкость этого слоя падает еще сильнее, а мощность увеличивается. Над астеносферой находится много более вязкий слой – литосфера , которая в общем случае включает кору и верхние, наиболее холодные и вязкие слои верхней мантии . Мощность литосферы в стабильных областях ~100 км и достигает несколько сотен км. Значительное повышение вязкости, по крайней мере на три порядка величины, происходит и в мантии под астеносферой.
Химическая конвекция связана с большими перемещениями крупных масс вещества в верхней мантии. Однако течения в мантии сами по себе не приводят к значительным вертикальным или горизонтальным смещениям литосферы. Это связано с резким понижением вязкости в астеносфере, играющей роль смазочного слоя между литосферой и основной частью мантии, расположенной под астеносферой. Из-за существования астеносферы вязкое взаимодействие литосферы с течениями в подстилающей мантии, даже при их большой интенсивности, оказывается слабым. Поэтому тектонические движения земной коры и литосферы не связаны непосредственно с этими течениями» [Артюшков, с. 288–291] и механизмы вертикального и горизонтального движения литосферы требуют особого рассмотрения.
Читать дальшеИнтервал:
Закладка: