Аркадий Липкин - Концепции современного естествознания. Часть 1. Науки о неживом (физика, химия, синергетика)
- Название:Концепции современного естествознания. Часть 1. Науки о неживом (физика, химия, синергетика)
- Автор:
- Жанр:
- Издательство:Литагент Директмедиа
- Год:2015
- Город:М.-Берлин
- ISBN:978-5-4475-3641-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Аркадий Липкин - Концепции современного естествознания. Часть 1. Науки о неживом (физика, химия, синергетика) краткое содержание
Концепции современного естествознания. Часть 1. Науки о неживом (физика, химия, синергетика) - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В результате мы определили все измеримые величины в модельном слое и соответствующие им эталоны и процедуры сравнения, инерциальные системы отсчета в «операциональном» слое, систему и внешнее воздействие. Понятие силы – внешнего воздействия на одночастичную систему – используют для построения системы взаимодействующих между собой частиц. Из частиц , межчастичных сил взаимодействия и внешних сил строится все многообразие рассматриваемых в ньютоновской механике механических систем (например, два тела, связанных пружинкой).
Математическими образами системы служат распределения масс и сил, связанных с материальными точками в декартовой системе координат. Уравнением движения является второй закон Ньютона, а состояние определяется значениями координат и импульсов (скоростей) в произвольный момент времени.
На этом сложные вопросы оснований классической механики кончаются и начинается решение задач (от школьных до тех, над которыми трудятся целые лаборатории в научно-исследовательских институтах).
5 . Формирование континуальной модели: сплошная среда, поле, волны
Модель сплошной (непрерывной) среды является основной альтернативой ньютоновской модели частицы в пустоте. Этот новый не локализованный в пространстве первичный идеальный объект , который характеризуется отсутствием пустоты, фиксируемым принципом непрерывности , и ориентацией на взаимодействие типа близкодействия : взаимодействуют только соприкасающиеся частицы или элементы среды (а не дальнодействия , как в ньютоновской теории тяготения).
На натурфилософском уровне модель сплошной среды была провозглашена Р. Декартом, а на естественно-научном физическом уровне развита в гидродинамике Эйлера. Она вполне сложилась уже в гидродинамике идеальной жидкости Л. Эйлера (жидкости, лишенной вязкости и теплопроводности).
В соответствии со схемой 3.1 главные свойства физической системы – это тип состояния (набор ее возможных состояний) и тип процедур измерения . Поэтому одним из главных отличий сплошной среды является то, что ее состояния определяются значениями соответствующих величин во всех точках занимаемого системой (сплошной средой) пространства. То есть, если сравнить одномерное движение частицы и гипотетической однопараметрической среды, то на плоскости (n, x), где x – координата, а N − параметр состояния среды, состояние частицы будет изображаться точкой, а состояние среды – линией. В Эйлеровой гидродинамике идеальной несжимаемой жидкости состояния жидкости определяются вектором скорости v (x) и скалярным давлением p (x), а уравнения движения выводятся из закона сохранения импульса и уравнения непрерывности.
Другая характерная черта – процедуры измерения основаны на использовании пробного тела . Пробное тело должно быть инородным по отношению к жидкости, чтобы выделить данную точку (при этом оно должно быть достаточно малым, чтобы можно было пренебречь его возмущающим воздействием на соседние области жидкости).
Есть особенность и в способе образования ВИО (И-фаза): для модели непрерывной среды не характерно построение ВИО в виде комбинации многих сред. Как правило, ВИО здесь возникают путем добавления различных граничных условий (границы внешние – типа берегов реки, и внутренние – типа островов или кораблей).
Модель сплошной (непрерывной) среды порождает две дочерние модели – волны и силовые поля, которые тоже являются «архетипическими» и используются для построения ПИО в различных разделах физики.
Так над гидродинамической моделью сплошной среды надстраивается модель волны . Волны – это изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию 13 13 Характерное свойство волн, независимо от их природы, состоит в том, что в волне осуществляется перенос энергии без переноса вещества (последний может иметь место лишь как побочное явление).
. Наиболее важные и часто встречающиеся виды волн – упругие волны (в том числе звуковые), волны на поверхности жидкости и электромагнитные волны. То есть некий тип состояний среды представляется в виде стационарного состояния (типа гладкой поверхности воды) и особого типа нестационарной добавки (чаще всего колебательного характера), называемой волной, которая возникает во многих средах в результате локального возмущения стационарного состояния (типа брошенного в воду камня).
Но, с другой стороны, волны могут рассматриваться как системы. Причем так же как различные механические системы собираются из частиц, волны (это может быть одиночный импульс, цуг, состоящий из нескольких импульсов, и т. д.) собираются из простейших, так называемых гармонических, или синусоидальных, волн. Все прочие волны можно представить в виде суммы синусоидальных волн. При этом линейные волны подчиняются принципу суперпозиции, т. е. они распространяются независимо друг от друга. Таким образом гармонические, или синусоидальные, волны играют здесь роль ПИО, которые характеризуются частотой (подобно тому, как механические частицы характеризуются массой). Направление распространения гармонической волны, ее амплитуда, начальная фаза, поляризация характеризуют ее состояние. Они меняются под действием затухания, фильтров, поляризаторов, фазовых пластин, зеркал и т. п., выступающих в роли внешних воздействий («сил»). Волны имеют передний и задний фронты (начало и конец, расстояние между которыми определяет еще один важный параметр волны – ее «длину когерентности»).
То есть волна представляет собой протяженный, но локальный (ограниченный) объект, движущийся в пространстве. Поэтому многое в их поведении напоминает поведение частиц. Не случайно в течение долгого времени конкурировали волновая и корпускулярная модели распространения света. Тем не менее исходно они выступают как альтернативные модели. Специфическими свойствами волн, характеризующими их распространение как принципиально отличное от движения частиц, являются свойства интерференции (термин, введенный Томасом Юнгом в 1803 г.) и дифракции (явление огибания тела волной, из-за чего предсказываемые геометрической оптикой резкие тени размываются). Эти свойства отличают поведение волн от поведения потока частиц, описываемого законами геометрической оптики.
Наиболее ярким является свойство интерференции : две совпадающие по частоте и имеющие неизменную разность фаз («когерентные») волны могут находиться как «в фазе» (максимум (гребень) под максимумом – слева на рис. 5.1), так и «в противофазе» (максимум (гребень) под минимумом (впадиной)– справа на рис. 5.1). В первом случае они складываются, во втором – вычитаются.
Читать дальшеИнтервал:
Закладка: