Виталий Скляр - Прогрессивные энерго- и ресурсосберегающие металлургические технологии. Учебное пособие для обучающихся по направлению «Металлургия»
- Название:Прогрессивные энерго- и ресурсосберегающие металлургические технологии. Учебное пособие для обучающихся по направлению «Металлургия»
- Автор:
- Жанр:
- Издательство:Литагент Ридеро
- Год:неизвестен
- ISBN:9785448376245
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виталий Скляр - Прогрессивные энерго- и ресурсосберегающие металлургические технологии. Учебное пособие для обучающихся по направлению «Металлургия» краткое содержание
Прогрессивные энерго- и ресурсосберегающие металлургические технологии. Учебное пособие для обучающихся по направлению «Металлургия» - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В случае процесса FASTMET продукцией является губчатое железо, FASTMELT – жидкая сталь, а в процессе ITmk3 данные комки плавятся в последней зоне этого пода, тем самым получая гранулы чугуна и шлак. Конечным этапом является разделение чугунных комков и шлака. Такая технология в России используется на Дальневосточном металлургическом комбинате (г. Петропавловск).
Вопросы для самоконтроля
1. Приведите основные пути снижения расхода кокса, назовите его заменители.
2. Что такое железо прямого восстановления? В каком виде оно выпускается?
3. Приведите способы прямого получения железа и дайте их описание.
4. Ресурсо- и энергосберегающие технологии в сталеплавильном производстве
§1. Сравнение энергоэффективности сталеплавильных процессов
В настоящее время для выплавки стали в массовом производстве используют различные типы печей. При анализе эффективности методов по энергосбережению в сталеплавильном производстве следует учитывать, что энергоемкость производства стали – это сумма затрат энергии как непосредственно в самом сталеплавильном процессе, так и суммарная энергоемкость предыдущих переделов (доменного, и подготовки сырья).
Поэтому повышение доли металлолома в шихте резко снижает расход энергоносителей на выплавку стали. Так как суммарные затраты энергии на сбор, подготовку и транспортировку 1 тонны металлолома в среднем 4 раза ниже чем на выплавку 1 тонны чугуна.
Сопоставление некоторых способов выплавки стали по расходу энергии приведено на рисунке 4.1.
Данный анализ позволяет сделать вывод о том, что наименее энергозатратным является процесс получения стали из металлолома в ДСП, в то время как схема «прямое восстановление железа (ПВ) + ДСП» наиболее энергозатратна, так как в данном процессе используется большое количество природного газа. Схема производства чугуна с использованием доменной печи (ДП) с последующей переработкой его в сталь в кислородном конвертере (КК) занимает промежуточное положение.
В целом, основными направлениями снижения энергоемкости сталеплавильного производства являются:
– выбор оптимальной структуры сталеплавильного производства (сокращение мартеновского производства и т.д.);
– максимальное использование всего ежегодно образующегося на предприятии металлолома;
– снижение доли чугуна в балансе плавки, сокращение расхода ферросплавов;
– совершенствование технологии плавки и конструкции сталеплавильных агрегатов;
– предварительный подогрев металлолома отходящими газами перед загрузкой;
– увеличение объемов внепечной обработки стали, в частности применение агрегата ковш-печь;
– как можно большая утилизация тепла отходящих газов, шлака, охлаждающей воды и металла;
– расширение объемов непрерывной разливки стали;
– выбор оптимальных с точки зрения энергозатрат схем расположения цехов по выплавке чугуна, стали и производству проката.
В качестве ресурсосберегающих мероприятий можно рассматривать технологии переплавки легированных отходов, которые позволяют плавить лом из легированных марок сталей с максимально возможным переходом легирующих элементов в готовый металл. В этом случае возможно исключение или сокращение окислительного периода плавки.

Рисунок 4.1 – Сопоставление способов выплавки стали по расходу энергии
Поскольку мартеновские печи практически полностью выведены из эксплуатации, рассмотрим пути снижения затрат только в кислородно-конвертерном и электросталеплавильном производстве.
§2. Снижение затрат энергии в кислородно-конвертерном процессе
В качестве сырья для кислородного конвертера используется жидкий чугун (70…80%) и металлолом. После загрузки исходных материалов в конвертер для выжигания «лишнего» углерода производят продувку ванны жидкого металла кислородом под высоким давлением через специальную фурму (фурмы).
Продувка разделяется на верхнюю (через погружную медную фурму), нижнюю (через донные фурмы) и комбинированную (одновременно через погружную и донные фурмы, при этом снизу может вдуваться только инертный газ). В процессе продувки кислород реагирует с углеродом и кремнием образую оксиды, при этом выделяется большое количество тепла, которое идет на поддержание температуры металла и расплавление металлолома. Однако этого количества тепла недостаточно для расплавления большего количества металлолома, чем 20…25%.
Конвертерный процесс сам по себе наименее энергоемок по сравнению с другими сталеплавильными процессами, однако использование большого количества чугуна для плавки обуславливает большую энергоемкость конвертерной стали.
Наиболее значимыми путями снижение затрат энергии в кислородно-конвертерном процессе являются:
– повышение температуры чугуна, заливаемого в конвертер, что позволяет добавить большее количество металлолома к шихте;
– увеличение доли металлолома и его предварительный подогрев отходящими газами;
– подача дополнительных энергоносителей в конвертер (измельченный уголь, природный газ);
– совершенствование технологии, в частности переход на комбинированную продувку, которая позволяет существенно уменьшить потери железа в шлаки пыль;
– проведение десульфурации, десиликонизации и дефосфорации чугуна в отдельных агрегатах или в желобе для выпуска чугуна (а не в конвертере и доменной печи);
– применение бесшлакового выпуска стали, для которого необходима установка затворов, которые перекрывают канал для выпуска стали в момент обнаружения частиц шлака в струе металла. Возможно применение также газодинамической отсечки шлака. Обнаружение шлака в этом случае производится инфракрасными или электромагнитными датчиками;
– применение более прочных огнеупоров, что обеспечивает большую стойкость кладки и соответственно увеличение производительности;
– применение технологии раздува шлака, согласно которой после выпуска стали, через фурму вдувают азот под большим давлением, и он разбрызгивает шлак по футеровке конвертера, что повышает ее стойкость;
– использование системы лазерного сканирования состояния футеровки конвертера, что позволяет производить ее оперативный ремонт, тем самым увеличивая ее стойкость.
§3. Снижение затрат энергии в электросталеплавильном производстве
В электросталеплавильном производстве применяют в основном дуговые сталеплавильные печи , на переменном и реже постоянном токе. Используются также индукционные печи в случае небольшого объема производства стали, в основном на машиностроительных предприятиях.
Читать дальшеИнтервал:
Закладка: