Николай Печуркин - Энергия и жизнь
- Название:Энергия и жизнь
- Автор:
- Жанр:
- Издательство:Наука, сибирское отделение
- Год:1988
- Город:Новосибирск
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Николай Печуркин - Энергия и жизнь краткое содержание
Что движет эволюцию жизни на нашей планете? В каком направлении развивается жизнь? Отчего «процветают» примитивные паразиты? Может ли разум человека влиять на судьбы Вселенной? На эти (и близкие им) вопросы делает попытку ответить автор, развивая энергетический подход к изучению живой природы.
Книга будет интересна для биологов, физиков, химиков, биофизиков, а также всех интересующихся общими вопросами развития.
Энергия и жизнь - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В модели Бернала полимеры сорбировались на глинистых минералах, и предполагалось, что далее они самоорганизуются в протоклетки с метаболизмом и отбором.
Эксперименты Опарина, Фокса и других — всего лишь демонстрация того, как работают физико-химические фазово-обособленные системы. Но они показывают аналогии жизненных процессов в простых системах и позволяют проиллюстрировать идеи выживания и отбора на уровне химических систем. Из этих экспериментов следует, что образование коацерватных капель и микросфер — это типичное поведение полимеров в растворах. Шансы таких капель на выживание повышаются, если они способны к каталитической активности, в результате которой могут расти в размерах. Те из них, которые обладали повышенной скоростью «высасывания» мономеров из окружающей среды, развивались быстрее и побеждали в конкурентной борьбе.
Таким образом, можно себе представить, что на протяжении целых геологических эр действовал мощный химический отбор. Он приводил к ускорению химических процессов. Механизм этого действия практически очевиден.
Согласно принципу максимальных скоростей реакций в случае нескольких открытых химических систем с общей внешней средой основной поток вещества идет через систему, которая обеспечивает наибольшую скорость химических превращений. Такие пробионтные системы в «первичном бульоне» получали преимущество перед соседними и начинали вытеснять более медленные (менее приспособленные) формы. Под воздействием внешних механических сил, таких как ветер и волны, происходило дробление (деление) капель. Запасы готовых органических веществ, пригодных для прямого использования, естественно, были ограниченны, что приводило к конкуренции за субстрат и, таким способом, к возникновению «предбиологического естественного отбора». Применение термина «естественный отбор» к эволюции коацерватов-пробионтов представляется вполне допустимым, так как никаких специфических отличий между популяциями протобионтов и современных микроорганизмов с точки зрения действия отбора не имеется. В том и другом случае отбор приводит к увеличению приспособленности популяции, что выражается через изменение действующих скоростей роста. А характер и направление отбора определяются условиями среды.
В этом смысле применение методов непрерывного культивирования, разработанных для исследования микробных популяций, по-видимому, является весьма перспективным для изучения действия отбора в популяциях протобионтов и в конечном счете для моделирования данного этапа эволюции, заключающегося в возникновении и совершенствовании метаболизма.
Совершенствование метаболизма может изучаться в проточной системе по методу, основанному на модели Н. Горовица. Логика рассуждений данного автора сводилась к тому, что в некоторый момент в первичном бульоне усваиваемые вещества A оказались полностью израсходованными; тогда те протобионты, которые были способны производить A из других доступных соединений B, получили преимущество. Когда, в свою очередь, снизилось количество вторичных питательных веществ B, возникла необходимость в образовании A и B из C и т. д. Приобретение соответствующих катализаторов, ускоряющих эти реакции, от простых катализаторов до ферментов, определяло степень усложнения этого процесса и ускорения метаболизма.
В соответствии со схемой Горовица об удлинении цепей метаболизма легко представить себе замыкание этих цепей в циклы, первые круговороты вещества с участием клеток. Причем необязательно это могло осуществляться в одном типе фазово-обособленных систем, возможно распределение по звеньям цикла, с вычленением звеньев. Вначале это гетеротрофное звено с наиболее древним источником энергии — гликолизом; затем, по мере исчерпания органики, подключение автотрофных вариантов. Подробнее мы обсудим это в следующем параграфе, а пока коротко оценим два альтернативных варианта использования энергии при развитии протобионтов.
Конкурентную гипотезу о прямом использовании энергии протоклетками развивает американский исследователь К. Фолсом. Он обращает внимание на то, что в экспериментах при воздействии энергии на смесь первичных газов, т. е. уже на первом этапе, не только образуются малые органические молекулы, но и обнаруживается полимерный материал, содержащий большое количество углерода. Обычно он осаждается на стенках реакционного сосуда или на электродах, иногда образует маслянистую пленку на поверхности воды. Химически он трудно интерпретируется. При встряхивании или при перемешивании такая пленка может образовывать сферулы от 1 до 20 мкм в диаметре. Они имеют двойную гидрофобную мембрану. После самосборки они медленно опускаются на дно сосуда. Такие структуры имеют одну удивительную способность: после начала реакции в искровом разряде их число возрастает во времени экспоненциально. По замечанию К. Фолсома, это может свидетельствовать о том, что одна микроструктура служит центром для самосборки других, а именно такого рода автокатализ и является характеристикой биологических популяций.
Прямое использование энергии и большой выход реакции (практически весь углерод переходит в эти структуры) заставляют обратить на такие сферулы особое внимание. Рецепторами энергии в них могут служить порфирины, которые легко получаются в экспериментах по имитации химической эволюции пирролов. Протоклетки, имеющие гидрофобную границу раздела фаз, способны избирательно адсорбировать порфирины. В свою очередь, сорбированные порфирины могут служить рецепторами ультрафиолетового излучения, устанавливать протонные градиенты и превращать энергию излучения в потенциальную энергию химических связей. Следовательно, на самой ранней стадии возникновения жизни возможно существование гетеротрофных фотосинтезирующих организмов, использующих УФ-излучение для создания полимеров. Даже нерегулярные полимеры аминокислот, образующие комплексы с ионами металлов, обладают слабой каталитической активностью. Так открывается поле деятельности для естественного отбора.
Вторая из конкурентных гипотез имеет дело с прямым использованием энергии первичных газовых выбросов изнутри нашей планеты. В гл. 4 мы подчеркивали, что основу функционирования живых систем составляет цикл реакций окисления — восстановления. В первичной атмосфере окислительные условия создавались за счет фотохимических реакций, к примеру отщеплением водорода с его диффузией в космос. По расчетам, восстановленные соединения типа CH 4в такой атмосфере неустойчивы и быстро окисляются. Глубины Земли, наоборот, являются источником восстановительных газов, которые поступали изнутри особенно интенсивно на ранних этапах развития самой планеты.
Читать дальшеИнтервал:
Закладка: