Джеймс Гордон - Почему мы не проваливаемся сквозь пол

Тут можно читать онлайн Джеймс Гордон - Почему мы не проваливаемся сквозь пол - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-build. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Почему мы не проваливаемся сквозь пол
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.13/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джеймс Гордон - Почему мы не проваливаемся сквозь пол краткое содержание

Почему мы не проваливаемся сквозь пол - описание и краткое содержание, автор Джеймс Гордон, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Еще в первые десятилетия нашего века ответ на вопросы о свойствах материалов
искали в эксперименте. И лишь последние 40 лет ученые, специалисты в области
материаловедения, стали серьезно изучать строение материалов, убедившись, что
их свойства зависят от совершенства в расположении атомов. Обо всем этом живо и
с юмором рассказывает автор книги профессор университета в Рединге
(Великобритания) Джеймс Эдвард Гордон. Книга рассчитана не только на школьников
и студентов, но и на тех, кого по роду работы интересует поведение современных
материалов и прочность конструкций.

Почему мы не проваливаемся сквозь пол - читать онлайн бесплатно полную версию (весь текст целиком)

Почему мы не проваливаемся сквозь пол - читать книгу онлайн бесплатно, автор Джеймс Гордон
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Посмотрим, что получается, когда трещина приближается к подобной поверхности, расположенном перпендикулярно к направлению ее движения. Вначале к поверхности раздела подойдет зона растяжения, которая движется впереди трещины, и она попытается разорвать тело по этой поверхности на каком-то участке. Если прочность поверхности раздела больше 1/5 от общей прочности сцепления материала, то эта поверхность не разрушится, трещина лишь пересечет ее и поведение материала не изменится. Если, однако, прочность границы раздела меньше примерно 1/5 от величины сцепления материала, то она будет разрушена, прежде чем главная трещина достигнет ее, и образуется ловушка, которая поймает и остановит трещину [31] По-видимому, можно считать, что в результате трещина будет притуплена. Радиус кончика трещины, который был очень малым, станет очень большим, практически бесконечно большим. Мы получим таким образом новую трещину под прямым углом к первоначальной, но тенденция к распространению трещины, параллельной приложенному напряжению, обычно отсутствует. .

Схематически все это показано на рис. 33, а микроснимок действительной картины трещин в армированном материале - на рис. 34. Конечно, если сцепление на поверхности раздела слишком слабое, то материал в целом будет слабым, непрочным; если сцепления не будет вообще, то придется изобретать какое-нибудь веревочное или плетеное приспособление, чтобы хоть за счет трения удержать куски вместе. Конечный результат сильно зависит от правильного выбора сил сцепления на поверхностях раздела, и, коль скоро это сделано, может быть получена блестящая комбинация прочности и вязкости.

Рис 33 Механизм торможения трещины по КукуГордону а   трещина приближается - фото 33

Рис. 33. Механизм торможения трещины по Куку-Гордону. а  — трещина приближается к слабой поверхности; б  — поверхность перед трещиной разрушается; в  — Т-образный тормоз для трещины. На практике трещина обычно отклоняется, как показано на рис. 34.

Итак, условие эффективного торможения трещин состоит в пятикратном ослаблении материала. Поначалу такая операция не кажется многообещающей. Еще не взявшись за дело, мы должны уже кое-чем поступиться. Однако если наблюдать за процессом торможения трещин, метод создания слабых поверхностей раздела выглядит вполне эффективным: истинное разрушающее напряжение у кончика трещины должно быть равным теоретической прочности материала, то есть должно лежать, как правило, между E /10 и E /5 ( E - модуль Юнга, см. главу 2). Уменьшая эту величину в 5 раз, мы все еще сохраняем прочность E /50 - E /25, достигнутую, кстати говоря, на практике в стеклопластиках и намного превышающую ту, что можно получить для металлов, сохраняя безопасный уровень вязкости (глава 8). К тому же прочность, значительно превышающая E /100, может и не составить особого интереса для практики.

Рис 34 Влияние внутренних поверхностей на торможение трещин Слева - фото 34

Рис. 34. Влияние внутренних поверхностей на торможение трещин. Слева - материал, содержащий множество внутренних поверхностей; справа - однородный материал.

Хрупкость большинства природных минералов связана с их большей или меньшей однородностью. Но, оказывается, некоторые минералы имеют слоистое строение, причем связь между слоями приблизительно нужной прочности. Самые распространенные минералы такого рода - асбест и слюда, именно поэтому они имеют столь удивительные и полезные свойства. Очень показательны в этом смысле знаменитые опыты со слюдой профессора Орована. Слюда представляет собой минерал с ионными связями, в котором условия баланса электрических зарядов в молекуле требуют существования слоев металлических атомов, вынужденных делить заряд одного электрона с несколькими соседями. Эти слои в кристалле являются слабыми поверхностями. Один из часто используемых типов слюды называется мусковитом ( muscovite - московский, этот сорт слюды впервые был найден в России). Прочность межслоевой связи в этой слюде составляет в среднем примерно 1/6 от прочности в остальном объеме кристалла.

Рис 35 Эксперименты Орована со слюдой а образец с ненагруженными кромками - фото 35

Рис. 35. Эксперименты Орована со слюдой. а - образец с ненагруженными кромками, прочность его 320 кГ/мм 2; б - нагрузка на кромках равна среднему напряжению в образце, прочность его 17,5 кГ/мм 2.

Орован измерял прочность мусковита при растяжении. Для первого опыта он вырезал из пластинки слюды образец обычной формы, напоминающий очертаниями контур песочных часов (рис. 35, б). Образец был плоским и достаточно тонким, а плоскости спайности - параллельными широкой грани образца. Такой образец как бы состоял из некоторого числа листов, слабо склеенных между собой. Кромки его имели грубые следы механической резки. Когда образец нагружался в испытательной машине, эти кромки нагружались в той же степени, что и середина, так что трещины начинались на кромках и распространялись в глубину образца обычным путем. Прочность, полученная на этих образцах, была около 17 кг/мм 2, то есть примерно равнялась прочности обычного стекла.

Затем Орован испытал ту же слюду, но на образцах другой формы. Из слюды вырезались прямоугольные пластинки, которые были несколько шире, чем захваты для крепления образцов в машине. Предполагалось, что образец будет нагружен так, как показано на рис. 35, а , то есть кромки его останутся ненагруженными. Наружные плоскости образца, лежащие на пути передачи нагрузки между захватами, должны быть, конечно, полностью нагруженными, а на них - царапины и другие концентраторы напряжений. Но трещины, появившиеся на этих концентраторах, едва начав расти, упираются на своем пути в относительно слабые плоскости спайности.

Прочность этих образцов оказалась равной приблизительно 320 кГ/мм 2, то есть была почти в 20 раз выше, чем прочность образцов, в которых трещинам не нужно было пересекать слабые плоскости. Это составляет 1,5% от модуля Юнга - цифра весьма внушительная. Но вот другой сорт слюды - Маргарит - имеет вдвое больше электронов связи через плоскость спайности, а потому хрупок и обладает ничтожной прочностью.

Подобные эксперименты показывают, что для материалов такого типа трудно отделить реальную прочность от хрупкости, поэтому введение слабых внутренних поверхностей можно рассматривать как увеличение общей прочности тела.

Слюда и асбест не использовались людьми каменного века для изготовления инструментов и оружия - плоскости спайности тянутся в них через весь кусок минерала, от одной грани к другой. Другой известный с древних времен минерал, нефрит, представляет собой мешанину малых плотно упакованных игольчатых кристаллов со слабым сцеплением на границах; его можно считать неорганическим эквивалентом вересковой трубки или бамбукового корня. Нефрит поэтому очень вязок и мог бы быть почти идеальным материалом для инструментов и оружия, обрабатывайся он полегче да встречайся в природе почаще.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джеймс Гордон читать все книги автора по порядку

Джеймс Гордон - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Почему мы не проваливаемся сквозь пол отзывы


Отзывы читателей о книге Почему мы не проваливаемся сквозь пол, автор: Джеймс Гордон. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x