Аркадий Курамшин - Жизнь замечательных веществ
- Название:Жизнь замечательных веществ
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2017
- Город:Москва
- ISBN:978-5-17-104096-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Аркадий Курамшин - Жизнь замечательных веществ краткое содержание
Сегодня в российской, и в международной инфосфере мы сталкиваемся с огромным количеством легенд и страшных историй на ночь, связанных с химией. Как-то так произошло, что химия стала вызывать опасение и страх, расцвёл иррациональный страх перед всем «химическим» – хемофобия.
Однако настоящие истории, связанные с открытием химических веществ, обнаружением их полезных свойств, гораздо интереснее придуманных легенд. К тому же, они смогут избавить читателя от иррационального страха перед всем химическим, заинтересовать химией и сделать так, чтобы все больше и больше людей перестали бы воспринимать эту науку как что-то опасное.
Жизнь замечательных веществ - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

В конце 1970-х и начале 1980-х наблюдение за состоянием атмосферы Земли показало, что содержание озона в атмосфере падает, что приводит к истончению озонового слоя, и в 1985 году в Антарктическом регионе над Южным полюсом впервые наблюдалась дыра в озоновом слое. При этом отмечалось не только постепенное понижение содержания озона в атмосфере, но и сезонные колебания концентрации озона – с 1985 года и по наши дни каждую весну в атмосфере над Антарктикой наблюдается практически полное отсутствие озона в атмосфере – это и есть «озоновая дыра».
Было предположено, что истончение озонового слоя было обусловлено использованием хлорфторуглеводородов (фреонов), которые в то время использовались в качестве газов-пропеллентов для аэрозольных баллончиков и в системах охлаждения бытовых приборов. До детального изучения процессов, протекающих в атмосфере, фреоны казались химикам и экологам идеальными благодаря своей химической устойчивости.

В 1974 году Марио Молина (Mario Molina) и Френк Шервуд Роулэнд (Frank Sherwood Rowland) опубликовали статью в Nature, в которой описывалась возможность разложения фреонов под воздействием ультрафиолета в верхних слоях атмосферы, а также то, как атомы хлора, образующиеся при таком разложении, могут катализировать разрушение озона до дикислорода, способствуя понижению концентрации стратосферного озона (один атом хлора может разрушить до 100 000 молекул озона).
Выводы Молины и Роулэнда оспаривались в то время и оспариваются сейчас; одним из моментов критики является то, что фреоны существенно тяжелее воздуха и им сложно подниматься на уровень стратосферы. Ещё одним из источников атомов хлора, разрушающих озоновый слой, считались системы ускорения американских «шаттлов», окислителями топлива в которых были хлораты и перхлораты калия (наша космонавтика в отношении опасности для озонового слоя всегда была вне подозрения).
Тем не менее в 1987 году был подписан Монреальский протокол – международное соглашение, существенно ограничивающее производство и применение фреонов (использовать фреоны для распыления содержимого аэрозольных баллончиков Монреальский протокол запретил, правда, полеты шаттлов не запретил). Возможно эти ограничения по применению фреонов (ну и, кстати, почившая в бозе американская программа космических кораблей многразового использования) привели к тому, что концентрация стратосферного озона снова стала увеличиваться, и, по оценкам, толщина озонового слоя вернется к уровню ранних 1970-х к 2060–2070 году (но это в том случае, если истощение озона обусловлено антропогенным воздействием, а не какими-то другими, возможно неизвестными пока для нас естественными природными процессами – активностью Солнца, например). Молина же и Роулэнд совместно с голландским химиком Паулем Крутценом (Paul Crutzen) в 1995 году разделили Нобелевскую премию по химии – за изучение реакций, протекающих в атмосфере Земли.

Озон имеет очень высокое сродство к электрону (1,9 эВ), что и обусловливает его свойства сильного окислителя, превосходимого в этом отношении только фтором. Причиной его химической активности является полярное строение молекулы озона, или точнее – положительно поляризованный атом кислорода, который придает всей молекуле электрофильный характер. Поэтому молекулы с высокой плотностью электронов являются наиболее предпочтительными реакционноспособными элементами. Озон является сильным окислителем и используется для разрушения органических соединений, чаще всего – с двойными связями, такое разрушение носит название «озонолиз».
Способность озона реагировать с органикой с одной стороны опасна – контакт озона с полимерами приводит к их разрушению и/или изменению их физико-механических свойств (например, увеличивается хрупкость), с другой стороны – способность озона окислять органику приводит к тому, что он применяется в отбелке целлюлозных материалов и обеззараживании питьевой воды.

Если ещё в 1990-е годы основным способом отбелки материалов было использование хлора и его соединений, то в настоящее время эволюция процесса отбелки тканей, бумаги и другого целлюлозосодержащего сырья направлена в сторону полного исключения молекулярного хлора и производных хлора с целью максимального снижения содержания хлорорганических соединений в отходах производства и в готовой продукции. В современной идеологии бесхлорной отбелки различают два направления:
1. Отбелка без молекулярного хлора (Elemental Chlorine Free – ECF), в которой не применяют элементарный хлор или гипохлориты, а отбеливающим реагентом является диоксид хлора.
2. Отбелка полностью без применения соединений хлора (Total Chlorine Free – TCF), здесь отбеливающими реагентами могут быть кислород, перекись водорода, пероксокислоты и озон (если внимательно посмотреть на упаковку офисной бумаги, на ней можно увидеть трехбуквенные обозначения – я вот на имеющейся у меня под рукой пачке «Снегурочки» вижу маркировку ECF).
Впервые в мире промышленное использование озона для отбелки древесной массы было осуществлено в 1975 году в г. Хекслунде (Норвегия) на фабрике для производства газетной бумаги производительностью 200 тыс. т в год. В настоящее время в Италии, Австрии, США, Швеции, Финляндии десятки предприятий имеют промышленные установки для отбелки озоном. Самая крупная из них (производительностью 1450 т/сут) смонтирована на заводе Мется-Ботния в г. Каскинен (Финляндия). В России опытная установка для обработки целлюлозы озоном была создана на Сясьском целлюлозно-бумажном комбинате в конце 1970-х годов, однако до промышленного внедрения разработка не была доведена, и информации о том, есть ли сейчас целлюлозно-бумажные производства, где используется отбелка озоном, я не нашёл.
Опять же – в Европе в настоящее время 95 % питьевой воды проходит озонную подготовку, в США идет процесс перевода с хлорирования на озонирование. В России на сегодняшний день существует всего несколько станций озонирования воды – в Москве и Нижнем Новгороде. Несмотря на уже упоминавшуюся токсичность озона, для конечного потребителя озонирование воды менее опасно, чем хлорирование, – озон достаточно быстро разрушается до дикислорода, не оставляя токсичных или нежелательных «следов» в обрабатываемой воде.
Читать дальшеИнтервал:
Закладка: