Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий

Тут можно читать онлайн Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-chem, издательство Наука, год 1983. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Популярная библиотека химических элементов. Книга первая. Водород — палладий
  • Автор:
  • Жанр:
  • Издательство:
    Наука
  • Год:
    1983
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий краткое содержание

Популярная библиотека химических элементов. Книга первая. Водород — палладий - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Популярная библиотека химических элементов
содержит сведения обо всех элементах
известных человечеству. Сегодня их 107
причем некоторые получены искусственно.
Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такие
как медь, железо,
известны с доисторических времен. Возраст других измеряется только веками
несмотря на то, что ими, еще не открытыми, человечество пользовалось
незапамятные времена. Достаточно вспомнить о кислороде, открытом лить в
веке. Третьи открыты
лет назад
но лишь в наше время приобрели первостепенную важность. Это уран, алюминий, бор, литий, бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтеза
технеций, плутоний, менделевий
курчатовий… Словом
сколько элементов, столько индивидуальностей, столько историй
столько неповторимых сочетаний свойств.
В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторую
обо всех остальных.

Популярная библиотека химических элементов. Книга первая. Водород — палладий - читать онлайн бесплатно полную версию (весь текст целиком)

Популярная библиотека химических элементов. Книга первая. Водород — палладий - читать книгу онлайн бесплатно, автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Сталь легированную кобальтом применяют и в ракетной технике Казалось бы - фото 101
Сталь, легированную кобальтом, применяют и в ракетной технике

Казалось бы, «сверхскоростные» конструкции нужно делать из наиболее тугоплавких материалов, таких, как вольфрам, молибден, тантал. Эти металлы, конечно, играют видную роль, но не следует забывать, что и у них есть недостатки, ограничивающие возможности применения. При высоких температурах они сравнительно легко окисляются. Обработка их затруднительна. Наконец, они дороги. Поэтому их применяют, когда другими материалами нельзя обойтись, а во многих узлах вместо них работают сплавы на никелевой или кобальтовой основе.

Самое широкое применение в авиационной и космической технике получили сплавы на основе никеля. Когда одного известного металловеда спросили, как он создает высокотемпературные сплавы, он ответил: «Я просто заменяю в сталях железо на никель».

В тех же целях применяют сплавы на основе кобальта. Большая распространенность никелевых сплавов объясняется в основном их большей изученностью и меньшей стоимостью. Эксплуатационные же свойства сплавов на основе никеля и кобальта практически идентичны. Но «механизмы прочности» разные. Высокая прочность никелевых сплавов с титаном и алюминием объясняется образованием фазы-упрочнителя состава Ni 3Al(Ti); чем больше в сплаве титана и алюминия, тем выше его механические свойства. Но при высоких температурах эксплуатации частицы фазы-упрочнителя переходят в раствор, и тогда сплав довольно быстро разупрочняется.

Кобальтовые же сплавы своей жаропрочностью обязаны образованию тугоплавких карбидов. Эти карбиды не растворяются в твердом растворе. Они обладают и малой диффузионной подвижностью. Правда, преимущества таких сплавов перед никелевыми проявляются лишь при температурах от 1038°С и выше. Последнее не должно смущать: известно, что чем выше температура, развивающаяся в двигателе, тем больше его эффективность. Кобальтовые сплавы хороши именно для наиболее эффективных высокотемпературных двигателей.

В конструкциях авиационных турбин применяют кобальтовые сплавы, которые содержат от 20 до 27% хрома. Этим достигается высокая «окалиностойкость» материала, позволяющая обходиться без защитных покрытий. Хром, кстати, единственный элемент, увеличивающий стойкость кобальта против окисления и одновременно его прочность при высокой температуре.

В лабораторных условиях сопоставляли свойства никелевых и кобальтовых сплавов под действием переменных температурных нагрузок (теплового удара). Испытания показали, что кобальтовые сплавы более «ударостойки». Не удивительно поэтому, что специалисты по космической технике все больше внимания уделяют сплавам элемента № 27. Это, если можно так выразиться, интерес с перспективой. Попробуем объяснить, что это значит, хотя бы на одном примере.

Все привычнее становятся полеты человека в космос. Но пока на экранах своих телевизоров мы видим лишь ракеты, получающие энергию в результате реакции окисления тех или иных топлив. Вряд ли этот вид «энергоснабжения» можно считать единственным и на будущее. Поднимутся ракеты, тягу которых создадут иные силы. В процессе разработки находятся электротермические, плазменные, ионные ракеты…

Важной составной частью двигательной установки любой из таких систем станет, по-видимому, электрогенератор. Электрогенератор большой мощности. Но, как мы знаем, мощные генераторы и весят много, и размеры имеют солидные. Как такую махину поместить на «транспортабельной установке»? Или — что практически более приемлемо — как сделать достаточно мощный и в то же время достаточно легкий генератор? Нужны оптимальные конструкции и оптимальные материалы для них.

В разрабатываемых проектах предусмотрен, в частности, атомный реактор с утилизацией тепла в паровой турбине. Крутить эту турбину будет не водяной пар, а ртутный (или пары щелочных металлов). В трубчатом бойлере тепло ядерной реакции испарит ртуть; ртутный пар, пройдя турбину и сделав свое дело, пойдет в конденсатор, где снова станет жидкостью, а затем опять, совершая круговорот, отправится в бойлер.

Такие аппараты должны работать без остановок, без осмотра и какого-либо ремонта не менее 10 тыс. часов, т. е. больше года. Судя по публикациям, бойлеры экспериментальных американских генераторов SNAP-2 и SNAP-8 сделаны из кобальтовых сплавов. Эти сплавы применили потому, что они жаропрочны, не подвержены амальгамации (не реагируют с ртутью), коррозионноустойчивы.

Дело есть и на Земле…

Мы рассказали далеко не о всех областях применения кобальта. Совершенно не упомянули, например, о том, что электролитические кобальтовые покрытия во многих отношениях превосходят никелевые. Получить кобальтовое покрытие нужной толщины (причем равномерной толщины!) можно не за час, как никелевое, а всего за 4 минуты. Кобальтовые покрытия более тверды, поэтому защитный слой кобальта можно сделать тоньше, чем соответствующий слой никеля.

Русским ученым Федотьевым был в свое время исследовал кобальтовый сплав (до 75% кобальта), предназначенный для замены платиновых электродов гальванических ванн. Оказалось, что этот сплав не только не уступает драгоценному металлу, но и превосходит его по нерастворимости в крепких кислотах, а обходится несравненно дешевле.

Мы не замечаем, что кобальт окружает нас в нашей повседневной жизни, в быту, конкретнее — в эмалированных кастрюлях, причем не только синего цвета. Широко известный ныне процесс эмалирования жести рождался в муках. Эмаль накладывалась, но держалась плохо и отскакивала от основного металла при нагреве, толчке, а то и без всяких видимых причин. Лишь тогда, когда стали наносить эмаль в два слоя (грунт и эмаль), с содержанием в первом слое всего лишь 0,6% кобальта, покрытие стало удерживаться прочно. Объясняется же это тем, что в процессе нагрева окислы кобальта восстанавливаются железом до металла; этот кобальт при дальнейшем нагреве диффундирует в железо, образуя с ним твердый сплав. Мы сказали лишь о кастрюле, а сколько эмалированной посуды используется в медицине, фармацевтической, химической промышленности. И везде кобальт, всего лишь 0,6%.

Использование кобальта, его сплавов и соединений ширится с каждым днем. В последнее время, например, они стали нужны для изготовления ферритов, в производстве «печатных схем» в радиотехнической промышленности, при изготовлении квантовых генераторов и усилителей. Это металл с большим настоящим и большим будущим.

Немного статистики

Интересны цифры, которые дают некоторое представление о том, на что расходуется кобальт в промышленно развитых странах Запада.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Популярная библиотека химических элементов. Книга первая. Водород — палладий отзывы


Отзывы читателей о книге Популярная библиотека химических элементов. Книга первая. Водород — палладий, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x