Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий
- Название:Популярная библиотека химических элементов. Книга первая. Водород — палладий
- Автор:
- Жанр:
- Издательство:Наука
- Год:1983
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий краткое содержание
содержит сведения обо всех элементах
известных человечеству. Сегодня их 107
причем некоторые получены искусственно.
Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такие
как медь, железо,
известны с доисторических времен. Возраст других измеряется только веками
несмотря на то, что ими, еще не открытыми, человечество пользовалось
незапамятные времена. Достаточно вспомнить о кислороде, открытом лить в
веке. Третьи открыты
лет назад
но лишь в наше время приобрели первостепенную важность. Это уран, алюминий, бор, литий, бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтеза
технеций, плутоний, менделевий
курчатовий… Словом
сколько элементов, столько индивидуальностей, столько историй
столько неповторимых сочетаний свойств.
В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторую
обо всех остальных.
Популярная библиотека химических элементов. Книга первая. Водород — палладий - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
ИЗ ГЛУБИНЫ. Наиболее достоверная из гипотез строения Земли утверждает, что ее ядро, как и железные метеориты, состоит из железоникелевого сплава — 90,85% Fe, 8,5% Ni и 0,6% Co. Оно заключает в себе чудовищную массу никеля — около 17∙10 19т — почти весь никель нашей планеты (общее его количество оценивается в 17,4∙10 19т).
В тонкую поверхностную кору Земли проникли лишь немногие из его атомов — в среднем один из ста тысяч. Часть этих атомов образовала вместе с медью и серой скопления сернистых минералов. (Несколько миллиардов лет спустя человек обнаружил эти скопления и назвал их сульфидными медно-никелевыми рудами.) Другие атомы никеля до самой поверхности Земли двигались в окружении железа, магния и хрома. Но здесь спутники никеля окислились, и часть их ушла прочь в виде гидроокисей.
Обогащенные никелем невзрачные землистые остатки ныне называются окисленными никелевыми рудами.
ИЗОТОПЫ НИКЕЛЯ. Две трети никеля, содержащегося в земной коре, приходится на долю изотопа 58Ni. В природе найдены пять изотопов этого элемента, все они стабильны. Еще десять изотопов никеля с массовыми числами 53, 54, 55, 56, 57, 59, 63, 65, 66 и 67 получены в разные годы искусственным путем. Самый стабильный из них 59Ni имеет период полураспада 75 тыс. лет.
НИКЕЛЬ И ЖИЗНЬ. В растениях в среднем 5∙10 -5весовых процентов никеля, в морских животных — 1,6∙10 -4, в наземных — 1∙10 -6, в человеческом организме — 1–2∙10 -6. О никеле в организмах известно уже немало. Установлено, например, что содержание его в крови человека меняется с возрастом, что у животных-альбиносов количество никеля в организме повышено, наконец, что существуют некоторые растения и микроорганизмы — «концентраторы» никеля, содержащие в тысячи и даже в сотни тысяч раз больше никеля, чем окружающая среда.
Ныне никель считается необходимым микроэлементом, хотя значительный (в 30 раз и более) избыток никеля в почве и растениях может быть причиной заболеваний, в частности заболеваний глаз.
ДВЕ СТОРОНЫ МЕДАЛИ. Некоторые растения под влиянием избытка никеля принимают необычные формы. Поиск таких форм — полезное средство разведки никелевых месторождений. Но избыток никеля в почвах имеет и обратную сторону: так, он является причиной болезни глаз у скота на Южном Урале и заболевания «боанг» у кокосовых пальм на Гавайских островах (пальмы, пораженные «боангом», дают пустые орехи).
ЕЩЕ ОДИН ИСТОЧНИК НИКЕЛЯ. В золе углей Южного Уэльса в Англии — до 78 кг никеля на тонну. Чем не никелевая руда, вдобавок уже добытая из земли, измельченная и доставленная в промышленный центр!
Повышенное содержание никеля в некоторых каменных углях, нефтях, сланцах говорит о возможности концентрации никеля ископаемым органическим веществом. Причины этого явления пока не выяснены.
КОРОЛЕВСКАЯ ПОСУДА. Никелированная посуда сейчас стала привычной. Но еще 100 лет тому назад никель был экзотическим металлом, и утварь из него была доступна только очень богатым людям. В никелевой посуде готовили пищу императору Австрии. В 80-х годах прошлого века никель перестал быть роскошью. Но тут перед никелевой посудой возникло новое препятствие: как раз в это время Франца Иосифа поразила неизвестная болезнь, и причину королевского недуга врачи приписали никелю. Немедленно последовало законодательное запрещение применять никель для изготовления посуды. Лишь через 20 лет после специальных исследований запрет был снят. Никель и ныне заменяет столовое серебро — обычно в виде никелированного медноникелевого сплава.
ИЗ РОДОСЛОВНОЙ НИКЕЛЕВЫХ СТАЛЕЙ. В 1799 г. Ж. Л. Пруст обнаружил присутствие никеля в «метеорическом железе» и предположил, что издавна известная стойкость «небесного металла» к ржавлению обусловлена именно примесью никеля. Эта догадка привлекла внимание молодого Фарадея. В 1820 г. Фарадею вместе с ножевым мастером Стодардом действительно удалось выплавить «синтетическое метеорное железо» с повышенной коррозионной стойкостью. Это был первый железоникелевый сплав, искусственно приготовленный человеком. Но сплав этот был ни на что не пригоден: ковкость его была гораздо хуже, чем у железа. Лишь в конце прошлого века, когда металлурги научились готовить ковкий никель, им удалось получить настоящую никелевую сталь. Три процента никеля почти удвоили предел упругости стали, на треть повысили ее механическую прочность и вдобавок улучшили ее коррозионную стойкость.
ПО ПРИНЦИПУ ЖЕЛЕЗОБЕТОНА. Что такое железобетон — известно всем. Теперь представьте себе, что вместо смеси цемента с гравием взят никель, а арматурой служат распределенные в нем частицы тугоплавкого вещества, например окиси магния, алюминия или тория, или карбида вольфрама, титана, хрома. Такие гибридные материалы сочетают химическую стойкость никеля с очень высокой жаропрочностью. Способы получения их различны. Есть, например, такой: смешивают тонкий порошок никеля с порошком «арматуры» и спекают эту смесь. Поступают и иначе: продувают кислородом расплав никеля и алюминия; алюминий переходит в Al 2O3, а более стойкий к окислению никель сохраняется в металлическом состоянии. Этот же способ, «вывернутый наизнанку», выглядит так: расплав смеси окислов никеля и магния продувают водородом — восстанавливается только никель. Найден и совсем иной принцпп — никелирование частиц «арматуры». Никелирование можно вести из газовой фазы, разлагая карбонил никеля на нагретых частицах. Полученный порошкообразный металл прессуют в заготовки изделий, а затем спекают. При этом исключается трудоемкий процесс механической обработки.
НИКЕЛЬ В ПОМАДЕ. Любой студент-химик знает, что образование алого осадка при добавлении диметилглиоксима к аммиачному раствору анализируемой смеси — лучшая реакция для качественного и количественного определения никеля. Но диметилглиоксимат никеля нужен не только аналитикам. Красивая глубокая окраска этого комплексного соединения привлекла внимание парфюмеров: диметилглиоксимат никеля вводят в состав губной помады. Некоторые из подобных диметилглиоксимату никеля соединений — основа очень светостойких красок.
НИКЕЛЬ И МАЛАЯ ЭНЕРГЕТИКА. Собственно говоря, «малая энергетика» не такая уж малая. Если сложить мощности всех химических источников тока, установленных в самолетах и транзисторных приемниках, автомобилях и электробритвах, тракторах и карманных фонариках, электрокарах и искусственных спутниках, то, наверное, полученная сумма будет соизмерима с многозначными числами, которыми выражается мощность крупнейших ГЭС и ГРЭС. Роль никеля в конструкциях малой энергетики ведущая.
Самые распространенные «минусы» в химических источниках тока — это цинк, кадмий, железо, а самые распространенные «плюсы» — окислы серебра, свинца, марганца, никеля. Соединения никеля используются в производстве щелочных аккумуляторов. Кстати, железоникелевый аккумулятор изобретен в 1900 г. Томасом Алвой Эдисоном.
Читать дальшеИнтервал:
Закладка: