Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий
- Название:Популярная библиотека химических элементов. Книга первая. Водород — палладий
- Автор:
- Жанр:
- Издательство:Наука
- Год:1983
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий краткое содержание
содержит сведения обо всех элементах
известных человечеству. Сегодня их 107
причем некоторые получены искусственно.
Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такие
как медь, железо,
известны с доисторических времен. Возраст других измеряется только веками
несмотря на то, что ими, еще не открытыми, человечество пользовалось
незапамятные времена. Достаточно вспомнить о кислороде, открытом лить в
веке. Третьи открыты
лет назад
но лишь в наше время приобрели первостепенную важность. Это уран, алюминий, бор, литий, бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтеза
технеций, плутоний, менделевий
курчатовий… Словом
сколько элементов, столько индивидуальностей, столько историй
столько неповторимых сочетаний свойств.
В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторую
обо всех остальных.
Популярная библиотека химических элементов. Книга первая. Водород — палладий - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Однако представьте себе ковш с 300 т стали и прикиньте, сколько времени пройдет, пока он прокипит полностью, и насколько за это время охладится металл.
Вам сразу станет ясно, что такой способ годится лишь для небольших количеств стали. Поэтому были разработаны другие, более быстрые и эффективные способы вакуумирования. Сейчас они применяются во всех развитых странах, и это позволило улучшить качество стали. Но требования к ней все росли и росли.
В начале 60-х годов в Киеве, во Всесоюзном институте электросварки им. Е. О. Патона, был разработан способ электрошлакового переплава стали, который очень скоро начали применять во многих странах. Этот способ очень прост. В водоохлаждаемый металлический сосуд — кристаллизатор — помещают слиток металла, который надо очистить, и засыпают его шлаком особого состава. Затем слиток подключают к источнику тока. На конце слитка возникает электрическая дуга, и металл начинает оплавляться. Жидкая сталь реагирует со шлаком и очищается не только от окислов, но и от нитридов, фосфидов и сульфидов. В кристаллизаторе застывает новый, очищенный от вредных примесей слиток. В 1963 г. за разработку и внедрение метода электрошлакового переплава группа работников Всесоюзного института электросварки во главе с Б. И. Медоваром и Ю. В. Латашом была удостоена Ленинской премии.
По несколько иному пути пошли ученые-металлурги из Центрального научно-исследовательского института черной металлургии им. И. П. Бардина. В содружестве с работниками металлургических заводов они разработали еще более простой способ. Шлаки особого состава для очистки металла расплавляют и выливают в ковш, а затем в этот жидкий шлак выпускают металл из печи. Шлак перемешивается с металлом и поглощает примеси. Метод этот быстр, эффективен и не требует больших затрат электроэнергии. Его авторы С. Г. Воинов, А. И. Осипов, А. Г. Шалимов и другие в 1966 г. также были удостоены Ленинской премии.
Однако у читателя уже, наверное, возник вопрос: а к чему все эти сложности? Ведь мы уже говорили, что в обычной электрической печи можно создать любую атмосферу. Значит, можно просто откачать из печи воздух и вести плавку в вакууме. Но не спешите в патентное бюро! Этот способ уже давно был использован в небольших индукционных печах, а в конце 60-х и начале 70-х годов его начали применять и в довольно больших дуговых и индукционных электропечах. Сейчас способы вакуумного дугового и вакуумного индукционного переплава получили довольно широкое распространение в промышленно развитых странах.
Здесь мы описали только основные способы очистки стали от вредных примесей. Существуют десятки их разновидностей. Они помогают металлургам удалить пресловутую ложку дегтя из бочки меда и получить высококачественный металл.
Без домен?
Выше уже говорилось, что черная металлургия с точки зрения химика — занятие, мягко говоря, нелогичное. Сначала железо насыщают углеродом и другими элементами, а потом тратят много труда и энергии для выжигания этих элементов. Не проще ли сразу восстановить железо из руды. Ведь именно так и поступали древние металлурги, которые получали размягченное горячее губчатое железо в сыродутных горнах.
В последние годы эта точка зрения уже вышла из стадии риторических вопросов и опирается на совершенно реальные и даже осуществленные проекты. Получением железа непосредственно из руды, минуя доменный процесс, занимались еще в прошлом веке. Тогда этот процесс и получил название прямого восстановления. Однако до последнего времени он не нашел большого распространения. Во-первых, все предложенные способы прямого восстановления были малопроизводительными, а во-вторых, полученный продукт — губчатое железо — был низкокачественным и загрязненным примесями. И все же энтузиасты продолжали работать в этом направлении.
Положение коренным образом изменилось с тех пор, когда в промышленности начали широко использовать природный газ. Он оказался идеальным средством восстановления железной руды. Основной компонент природного газа — метан CH 4разлагают окислением в присутствии катализатора в специальных аппаратах — реформерах по реакции
Получается смесь восстановительных газов — окиси углерода и водорода. Эта смесь поступает в реактор, в который подается и железная руда. Оговоримся сразу — формы и конструкции реакторов очень разнообразны. Иногда реактором служит вращающаяся трубчатая печь типа цементной, иногда — шахтная печь, иногда — закрытая реторта. Этим и объясняется разнообразие названий способов прямого восстановления: Мидрекс, Пурофер, Охалата-и-Ламина, СЛ-РН и т. д. Число способов уже перевалило за два десятка. Но суть их обычно одна и та же. Богатое железорудное сырье восстанавливается смесью окиси углерода и водорода.
Но что же делать с полученной продукцией? Из губчатого железа не только хорошего топора — хорошего гвоздя отковать нельзя. Как бы ни была богата исходная руда, чистого железа из нее все равно не получится. По законам химической термодинамики даже восстановить все содержащееся в руде железо не удастся; часть его все равно останется в продукте в виде окислов. И здесь на помощь нам приходит испытанный друг — электропечь. Губчатое железо оказывается почти идеальным сырьем для электрометаллургии. Оно содержит мало вредных примесей и хорошо плавится.
Итак, опять двухступенчатый процесс! Но это уже другой способ. Выгода схемы прямое восстановление — электропечь состоит в ее дешевизне. Установки прямого восстановления значительно дешевле и потребляют меньше энергии, чем доменные печи.
Такая бездоменная технология сталеплавильного производства была заложена в проект Оскольского электрометаллургического комбината.
В нашей стране вблизи Старого Оскола сооружается большой металлургический комбинат, который будет работать именно по такой схеме. Его первая очередь уже введена в эксплуатацию.
Заметим, что прямой переплав — не единственный способ применения губчатого железа в черной металлургии. Его можно также использовать вместо металлолома в мартеновских печах, конвертерах и электросталеплавильных печах.
Способ переплава губчатого железа в электропечах бурно распространяется и за рубежом, особенно в странах, располагающих большими запасами нефти и природного газа, т. е. в странах Латинской Америки и Ближнего Востока. Однако, уже исходя из этих соображений (наличия природного газа), пока нет еще оснований считать, что новый способ когда-нибудь полностью вытеснит традиционный двухступенчатый способ доменная печь — сталеплавильный агрегат.
Читать дальшеИнтервал:
Закладка: