Лука Турин - Секрет аромата. От молекулы до духов. Как запах становится произведением искусства
- Название:Секрет аромата. От молекулы до духов. Как запах становится произведением искусства
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2021
- Город:Москва
- ISBN:978-5-04-155462-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лука Турин - Секрет аромата. От молекулы до духов. Как запах становится произведением искусства краткое содержание
Лука Турин, знаменитый парфюмерный критик, рассказывает увлекательно, доступно, весело и убедительно о самом загадочном из чувств.
В формате PDF A4 сохранён издательский дизайн.
Секрет аромата. От молекулы до духов. Как запах становится произведением искусства - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Что касается амбры, тут боги проявляют не только чувство юмора, но и порой некоторую жестокость. Чрезвычайно заслуженный химик-флейворист Гюнтер Олофф многие годы работал с амбровыми веществами, которые стремятся быть весьма жесткими молекулами, связанными мостиками и кольцами. В 1971 г. он предложил применить к запаху амбры «Правило трех осей». Согласно этому правилу, амбра должна иметь структуру под названием декалин, напоминающую два составленных рядом шезлонга, а три группы в позициях 1, 2 и 4 должны быть аксиальными, т. е. направленными в стороны от горизонтали. Это соответствовало множеству данных. Однако через несколько лет появилось несколько веществ, имеющих запах амбры, среди которых превосходное чрезвычайно сильное вещество каранал , названное в честь Карен Росситер, химика компании Quest, которая открыла его [46] Она также открыла превосходное розовое соединение, которому дали название Росситол. Таким образом, она, вероятно, единственная среди живущих ныне химиков, открывшая вещества, названные в честь ее имени и фамилии.
.

Каранал не подчиняется правилу трех осей.
Немного биологии
Запах, как и цвет — биологический феномен. Это не собственное свойство молекулы — это то, что чувствуют наши клетки, когда молекулы к ним прикасаются. Иными словами, это проблема молекулярного распознавания. Молекулярное распознавание повсеместно в биологии. Наберите «молекулярное распознавание» в поисковой строке любого браузера — и вам вывалится более пятисот тысяч результатов.
Сначала рассмотрим, как жизнь создает свои молекулы. Кумарин получают из бобов тонка с дерева, которое на языке народа тупи из Французской Гайаны называют cumarù.

При ферментации бобы высыхают и высвобождают кумарин, которого так много, и он такой чистый, что на поверхности бобов спонтанно образуются белые кристаллы. В очень слабом растворе он сладкий на вкус. В более концентрированном — горький. Одного боба достаточно, чтобы сделать добрый (хотя и несколько канцерогенный) килограмм мороженого. Всю свою жизнь бобы дерева диптерикс душистый в природных условиях без малейших возражений вырабатывают кумарин — для этого им не требуются ни сильные кислоты, ни причудливые растворители, ни бикарбонат натрия. Они делают это с помощью инструментов, о которых современные химики-органики могут только мечтать [47] Наука уже, похоже, готова мечту сделать явью. Химики, и в первую очередь лауреат Нобелевской премии Жан-Мари Лен, берут листок из книги жизни и постепенно воссоздают синтетические энзимы, ничуть не уступающие натуральным. Когда-нибудь вся химия будет строиться таким образом.
.
Почти каждая химическая реакция в живом организме облегчается благодаря специальному катализатору, или энзиму, который сам по себе является молекулой. Как это работает? Например, в случае с кумарином, пятым шагом его натурального образования в бобе является изгибание свободного конца молекулы таким образом, чтобы ей было легче найти кусок, к которому нужно присоединиться. Это происходит благодаря энзиму под названием изомераза, который прикрепляется к молекуле таким образом, что заставляет связь «повернуться» в нужном направлении, как мы поворачиваем, например, крышку банки с бисквитами.
Запах, как и цвет — биологический феномен.
Для связывания молекул энзимы должны иметь достаточно большие карманы, чтобы молекулы в них помещались. Соответственно, энзимы стремятся быть намного крупнее, чем объекты, которые они связывают. Одна такая изомераза изображена ниже, вместе с гораздо более мелкой молекулой кумарина, которую она связывает.

Этот энзим по биологическим стандартам считается мелким, но все равно это очень большая молекула для химиков: сорок четыре атома углерода, шестьдесят девять — водорода, двенадцать — кислорода, один — азота. Белки, или протеины — большие: простой (фиктивный) белок, представляющий только по одному из каждых двенадцати доступных компоновочных блоков, в нотации SMILES выглядит следующим образом:
OC(=O)CC[C@](n: c(=O)[C@@](n: c(=O)[C@@](n: c(=O)[C@@](n: c(=O)[C@@](n: c(=O)[C@@](n: c(=O)[C@@](n: c(=O)[C@@](n: c(=O)[C@@](n: c(=O)[C@@](n: c(=O)[C@@](n: c(=O)[C@@](n: c(=O)[C@@](n: c(=O)[C@@](n: c(=O)CN)C)C(C)C)CC(C)C)[C@@](C)CC)CO)[C@](O)C)CS)CCSC)Cc1ccccc1)Cc2c
Энзимы типа изомеразы — класс белков. Если бы его можно было разделить, то этот энзим, как все белки, выглядел бы как спутанная нитка бус, созданных из маленьких, размером с молекулу кумарина, строительных блоков, связанных между собой. Различные белки просто создаются из различных строительных блоков, и цепочка может оказаться длиннее или короче. Жизнь состоит преимущественно из двух типов молекул, маленьких, как кумарин, и больших, как белки. Некоторые белки являются инструментом для создания или разделения мелких молекул, но есть и другие типы — сенсоры, которые просто сообщают вам о наличии мелких молекул. Например, когда вы принимаете валиум (мелкая молекула), валиум связывается с рецептором (большая молекула, или белок), который действует как тумблер, включающий или выключающий белок. Поразительное здесь то, что когда белки (большие парни) связывают молекулы (маленькие парни), они делают это с абсолютной точностью? Тот, который ориентирован на кумарин, не связывает валиум, и наоборот. Впрочем, как можно предполагать, мир состоит далеко не только из кумарина и валиума. На самом деле известны десятки тысяч мелких молекул и десятки тысяч белков (энзимов или сенсоров), которые создают, ломают или просто дают ощущать мелких парнишек. Как рецепторы понимают, какие молекулы связывать?
Ключи и замки
Ответ — в системе замкóв и ключей. Белки — это замки, а мелкие молекулы — ключи. Абсолютный механизм взаимодействия ключа и замка нам хорошо известен — это антитела. Сделать инъекцию (вакцинацию) ключа (мелких молекул), чужеродного организму, и организм в обязательном порядке начнет производить замки (антитела). Они прикрепляются к чужеродным молекулам и не дают им нанести вред организму. Как они прикрепляются? Нет, не с помощью сильной двухэлектронной связи, как между атомами в молекуле. Нет, происходит взаимное прилипание антител и молекул, своего рода флирт, отличающийся от реального брака настоящих связей. Причина этого взаимодействия в том, что молекулы имеют небольшие липкие участки. Например, азот в мелкой молекуле может прикрепиться к ОН-группе большой молекулы; два бензольных кольца могут слипнуться как стопка тарелок, а положительный заряд мелкой молекулы может прикрепиться к отрицательному на большой. В каждом случае действуют исключительно электростатические силы, но они слегка различаются между собой по силе и дальности действия. Каждая из этих сил весьма разборчива в плане расстояния и направления. Объекты должны быть сориентированы как полагается , иначе связи не получится. Это взаимодействие можно сравнить с взаимодействием магнитов: на небольшом расстоянии, и только если магниты ориентированы должным образом.
Читать дальшеИнтервал:
Закладка: