Ник Лэйн - Кислород. Молекула, изменившая мир

Тут можно читать онлайн Ник Лэйн - Кислород. Молекула, изменившая мир - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-chem, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Кислород. Молекула, изменившая мир
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2016
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ник Лэйн - Кислород. Молекула, изменившая мир краткое содержание

Кислород. Молекула, изменившая мир - описание и краткое содержание, автор Ник Лэйн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
С тех пор как в 1770-х годах кислород был открыт, ученые горячо спорят о его свойствах. Этот спор продолжается по сей день. Одни объявляют кислород эликсиром жизни — чудесным тонизирующим препаратом, лекарством против старения, косметическим средством и перспективным методом лечения. Другие воспринимают его как огнеопасное вещество и страшный яд, который в конце концов уничтожит нас всех.
Ник Лэйн ответит на вопрос: кислород — наш единственный шанс на выживание или самый худший враг?

Кислород. Молекула, изменившая мир - читать онлайн бесплатно полную версию (весь текст целиком)

Кислород. Молекула, изменившая мир - читать книгу онлайн бесплатно, автор Ник Лэйн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В таком ключе утверждение Кастрезаны и Сарасте о том, что LUCA мог дышать кислородом, приобретает смысл. Клеткам LUСА нужно было совсем немного кислорода, возможно, едва детектируемое количество, но они могли запасать его и использовать при необходимости. Если это так, многие потомки LUСА, по-видимому, потеряли способность применять кислород для производства энергии в связи с адаптацией к жизни в специфических условиях. Другие утратили возможность перерабатывать сульфиты или нитриты. Предки эукариот, очевидно, потеряли гены большинства белков дыхательной цепи, включая ген цитохромоксидазы, но затем получили некоторые из них обратно от пурпурныx бактерий, превратившихся в митохондрии. Изменившиеся до неузнаваемости обломки этих генов, наверное, по-прежнему составляют часть «мусорной» ДНК [53] Гены, вышедшие из употребления позднее, все еще можно узнать, поскольку за более короткий отрезок времени их последовательности меньше изменились. Благодаря определению полной нуклеотидной последовательности генома человека мы узнали, какое множество генов было утеряно. Хороший пример — восприятие запаха. Когда-то у наших предков было 900 обонятельных генов, но 60% оказались «испорчены» (на их основе не может синтезироваться функциональный белок). Когда наши предки приматы стали лазать по деревьям, зрение стало играть более важную роль в борьбе за выживание, чем обоняние, так что многие обонятельные гены оказались ненужными и разрушились. . Самое удивительное заключается в том, что LUСА мог использовать кислород для получения энергии уже 4 млрд лет назад. Безусловно, эта клетка умела защищаться от кислорода и, возможно, использовала для этого гемоглобиноподобные белки и антиоксидантные ферменты, такие как СОД. В очередной раз, теперь уже с помощью генетических данных, мы доказали несостоятельность гипотезы о том, что антиоксиданты появились в ответ на увеличение концентрации кислорода в воздухе.

Конечно, это гипотетический сценарий, но он подтверждается интересными и согласованными доказательствами. Вывод о том, что LUСА имел гибкий метаболизм, позволяет разрешить ряд старых парадоксов, в частности эволюцию фотосинтеза, древнейшее происхождение гемоглобина и аэробного дыхания. Если основные тезисы нашего сценария верны, традиционные представления придется пересматривать практически полностью.

Итак, давайте кратко сформулируем базовые положения новой эволюционной схемы. LUСА жил в среде, сформированной под действием космического излучения. Гдe бы жизнь ни появилась изначально, LUCA должен был жить на поверхности океана, хотя бы какое-то время. Поскольку археи произошли от LUСА (а не наоборот), серные термофильные организмы не могли быть самыми первыми формами жизни, как считают некоторые. Напротив, если LUСА обладал гибким метаболизмом, он жил в изменяющемся мире, в том числе на поверхности океана.

Действие излучения на поверхность океана не привело к исчезновению всех форм жизни, как иногда пытаются изобразить. Путем расщепления воды с образованием свободных радикалов и пероксида водорода ультрафиолeтовые лучи обеспечили дополнительный источник энергии. Пероксид водорода — сравнительно устойчивое соединение, которое способно накапливаться в мелких водоемах, а затем расщепляться на воду и кислород. Клетки могли захватывать и запасать этот кислород с помощью гемоглобина. Затем кислород высвобождался для получения энергии при участии цитохромоксидазы. Гемовая группа, как в цитохромоксидазе и гемоглобине, могла стать основой эволюции химически родственных хлорофиллов, способных превращать энергию света в сахара с помощью вариантов дыхательных цепей [54] О сходстве механизмов реакций цитохромоксидазы и кислород-выделяющего комплекса писали, в частности, Kypтис Хогансон и его коллеги из Университета Мичигана (см. список литературы в конце книги). .

Вероятно, первые фотосинтезирующие организмы расщепляли сероводород или соли железа, но по мере исчерпания этих ресурсов в результате окислительного стресса в изолированных водоемах им пришлось переходить на другие субстраты — пероксид водорода и воду. С появлением оксигенного фотосинтеза в атмосфере и в океанах начал накапливаться свободный кислород. Однако оптимальная для дыхания концентрация кислорода осталась практически такой же, какой она была в момент возникновения первых дыхательных ферментов. Даже сегодня человеческая цитохромоксидаза лучше всего функционирует при концентрации кислорода ниже 0,3% атмосферного уровня. И человеческое тело поддерживает концентрацию кислорода в митохондриях именно на этом уровне.

Такая версия событий позволяет сделать выводы, имеющие непосредственное отношение к новейшим результатам медицинских исследований oтносительно использования антиоксидантов. Постоянное несоответствие между концентрацией кислорода во внешней и во внутриклеточной среде является причиной многих заболеваний человека и разрешается на уровне индивидуальных клеток. Сохранение древнейшего антиоксидантного равновесия можно сравнить с сохранением солевого состава жидкостей организма, по-прежнему соответствующего составу морской воды, в которой возникли наши одноклеточные предки. (Дж. Б. С. Холдейн называл весь комплекс клеток человеческого тела «морским монстром».)

Поддержание антиоксидантного равновесия — обязательная функция клетки, предсказуемым образом изменяющейся при различных cпособах лечения. Некоторые молекулы (о них мы говорили в данной главе) выполняют антиоксидантную функцию. Каталаза расщепляет пероксид водорода с образованием кислорода, но без образования свободных радикалов. Гемоглобины и миоглобины связывают кислород и высвобождают его только тогда, когда его концентрация снижается до безопасного уровня. Цитохромоксидаза вычищает избыток кислорода, опять же не приводя к выделению свободных радикалов. Все эти реакции регулируют внутриклеточное содержание кислорода и тем самым препятствуют выделению свободных радикалов кислорода. Вполне логично предположить, что каталаза возникла и для того, чтобы производить кислород из пероксида водорода, и для того, чтобы снижать концентрацию токсичного кислорода. Гемоглобин тоже мог эволюционировать для связывания кислорода в те времена, когда этот газ был редким и ценным ресурсом. Цитохромоксидаза, по-видимому, эволюционировала как метаболический фермент, а не как антиоксидант. Их эволюционное прошлое неотделимо от их современной функции, но мы, к сожалению, ничего об этом не знаем.

Такая многофункциональность может объяснять странные несоответствия, связанные с самим словом «антиоксидант» и с представлением о том, чтo молекулы эволюционируют для какой-то одной цели. Mногиe так называемые антиоксиданты имеют несколько функций и задействованы в различных регуляторных механизмах в клетке. И поэтому антиоксиданты поддерживают концентрацию кислорода в клетке в каких-то физиологических пределах, а не просто устраняют свободные радикалы. Это очень важно. Часто пищевые добавки антиоксидантов принимают для устранения свободных радикалов, но это может повлиять на регуляторные механизмы в клетках. Таким образом, нельзя заниматься только изучением болезни как таковой, необходимо в эволюционной перспективе задаваться вопросом, почему дело обстоит именно так и что может произойти, если мы попытаемся вмешаться. В следующих двух главах мы увидим, насколько плотно антиоксиданты вплетены в механизмы жизнедеятельности клетки. Мы попробуем понять, как все вышесказанное может помочь нам повлиять на процессы старения и развития заболеваний.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ник Лэйн читать все книги автора по порядку

Ник Лэйн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Кислород. Молекула, изменившая мир отзывы


Отзывы читателей о книге Кислород. Молекула, изменившая мир, автор: Ник Лэйн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x