Ник Лэйн - Кислород. Молекула, изменившая мир

Тут можно читать онлайн Ник Лэйн - Кислород. Молекула, изменившая мир - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-chem, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Кислород. Молекула, изменившая мир
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2016
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ник Лэйн - Кислород. Молекула, изменившая мир краткое содержание

Кислород. Молекула, изменившая мир - описание и краткое содержание, автор Ник Лэйн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
С тех пор как в 1770-х годах кислород был открыт, ученые горячо спорят о его свойствах. Этот спор продолжается по сей день. Одни объявляют кислород эликсиром жизни — чудесным тонизирующим препаратом, лекарством против старения, косметическим средством и перспективным методом лечения. Другие воспринимают его как огнеопасное вещество и страшный яд, который в конце концов уничтожит нас всех.
Ник Лэйн ответит на вопрос: кислород — наш единственный шанс на выживание или самый худший враг?

Кислород. Молекула, изменившая мир - читать онлайн бесплатно полную версию (весь текст целиком)

Кислород. Молекула, изменившая мир - читать книгу онлайн бесплатно, автор Ник Лэйн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Удивительно, что некоторые современные микроорганизмы способны использовать кислород в еще более низкой концентрации. Например, некоторые виды протеобактерий живут в симбиозе с бобовыми растениями, поселяясь в их клубеньках. В обмен на кров и защиту они снабжают растения нитратами, которые синтезируют из азота воздуха. Активность нитрогеназы, катализирующей эту реакция, ингибируется кислородом даже в очень низкой концентрации. Бобовые растения и азотфиксирующие бактерии устроены таким образом, чтобы поддерживать минимальную концентрацию кислорода в клубеньках. Бактерии окружают себя толстым слоем слизи, препятствующей проникновению кислорода. Если этой защиты недостаточно, они активируют фермент, который быстро захватывает кислород, не производя энергии. Бобовые растения синтезируют родственный гемоглобину кислород-связывающий фермент леггемоглобин, регулирующий концентрацию свободного кислорода. Благодаря этим адаптациям уровень кислорода в клетках бактерий ниже 0,01% атмосферного уровня, так что кислород не мешает действию нитрогеназы.

Удивительно, что при всех этих адаптациях, призванных минимизировать концентрацию кислорода, некоторые азотфиксирующие бактерии, такие как Bradyrhizobium japonicum , являются аэробами. Их форма цитохромоксидазы, известная как FixN, отличается чрезвычайно высоким сродством к кислороду. Этот фермент — дальний родственник митохондриальной цитохромоксидазы; вероятно, обе формы произошли от общего предка. По некоторым данным, FixN функционально связана с леггемоглобином, который высвобождает связанный кислород только при очень низком содержании кислорода в среде. Таким образом, поддержание низкой концентрации кислорода достигается за счет нескольких механизмов, и весь кислород, которому удается прорваться через эту защиту, связывается леггемоглобином. При очень низкой концентрации кислорода (ниже 0,01%) леггемоглобин передает связанный кислород оксидазе FixN, использующей его для получения энергии в форме АТФ. Система в целом очень стабильна и направлена на регуляцию содержания кислорода, а не на его ликвидацию.

Система клубеньков — пример метаболизма при крайне низком содержании кислорода, но в целом практически то же самое происходит и в клетках человеческого тела. Наша очевидная зависимость от кислорода скрывает от нас тот факт, что клетки внутренних органов совсем не адаптированы к приему кислородных ванн. Развитие многоклеточных организмов, возможно, отчасти было вызвано необходимостью защищаться от кислорода, поскольку внутри организма концентрация кислорода ниже, чем снаружи. Нашу элегантную систему циркуляции крови, которую в первую очередь рассматривают в качестве системы распределения кислорода между индивидуальными клетками, вполне можно воспринимать как средство защиты от кислорода или по крайней мере контроля его содержания.

Давайте остановимся на этом чуть подробнее. Атмосферное давление сухого воздуха на уровне моря составляет около 760 мм рт. ст. Примерно 78% этого давления обеспечивает азот, а 21% — кислород. Таким образом, давление кислорода в атмосфере составляет около 160 мм рт. ст. В легких кислород связывается с гемоглобином, в большом количестве содержащимся в эритроцитах циркулирующей крови. В артериальной крови гемоглобин насыщен кислородом на 95%, и давление кислорода составляет около 100 мм рт. ст. По мере прохождения крови через органы и ткани гемоглобин отдает кислород, так что давление кислорода снижается и на уровне сердца составляет около 85 мм рт. ст., на уровне артериол — 70 мм рт. ст., и в сети капилляров — 50 мм рт. ст. Здесь гемоглобин насыщен кислородом примерно на 60 — 70%. Кислород отделяется от гемоглобина и диффундирует в клетки тканей по градиенту концентрации. Этот градиент постоянно поддерживается за счет выведения кислорода в процессе дыхания. В большинстве клеток давление кислорода составляет 1 — 10 мм рт. ст. Наконец, кислород попадает в митохондрии, где за счет интенсивного дыхания его содержание снижается еще больше. Давление кислорода внутри митохондрий обычно ниже 0,5 мм рт. ст., что эквивалентно 0,3% содержания кислорода в атмосфере, или 0,07% общего атмосферного давления. Таким образом, содержание кислорода в митохондриях почти такое же, как в гипотетических «аноксических» условиях на первозданной Земле. Не является ли это отголоском прошлого?

Можно также сравнить функции гемоглобина и родственных ему белков, включая мышечный белок миоглобин, в клубеньках бобовых растений и в клетках животных. После всего, что вы уже узнали из данной главы, вас не должно удивлять наличие похожего на гемоглобин белка (с очень близкой последовательностью) у археи Halobacterium salinarum , о чем в 2000 г. в журнале Nature сообщил Шаобин Хоу и его коллеги из Университета Гонолулу на Гавайях. Древнейшее происхождение гемоглобина и миоглобина уже никого не удивляет; аналогичные последовательности обнаружены и у бактерий. Но открытие Хоу показывает, что подобные молекулы могли существовать уже у LUCA.

Зачем LUСА или другим одноклеточным организмам нужен гемоглобин — белок, который переносит кислород в крови животных? Взгляните на проблему под другим углом, и все встанет на свои места: гемоглобин следует рассматривать не как переносчик кислорода, а как регулятор уровня кислорода. Именно такую функцию выполняет леггемоглобин в клубеньках бобовых растений — он поддерживает очень низкую внутриклеточную концентрацию кислорода, высвобождая кислород только по требованию. Так же работает миоглобин, ответственный за красный цвет мышц животных. Структура миоглобина похожа на структуру одной субъединицы гемоглобина, а его сродство к кислороду выше, чем сродство гемоглобина. Именно поэтому миоглобин может выводить кислород из кровотока и запасать его в мышцах. В мышцах китов и других глубоководных животных очень много миоглобина, связывающего большой объем кислорода, что позволяет животным часами находиться под водой. Однако уровень свободного кислорода в их мышцах постоянно остается низким.

Такая же система реализуется и в одноклеточных организмах. Их гемоглобиноподобные белки сначала запасают, а потом постепенно высвобождают кислород, поддерживая в клетках его низкую концентрацию, пригодную для дыхания. Именно эту регуляторную функцию подтверждает открытие Хоу и его коллег. Обнаруженная ими в клетках Halobacterium salinanim молекула действует в качестве кислородного датчика, позволяющего клетке определять уровень кислорода и перемещаться в зону его оптимальной концентрации. Некоторые бактерии тоже имеют аналогичные датчики. Общий знаменатель во всех этих механизмах — способность поддерживать внутриклеточную концентрацию кислорода на определенном уровне.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ник Лэйн читать все книги автора по порядку

Ник Лэйн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Кислород. Молекула, изменившая мир отзывы


Отзывы читателей о книге Кислород. Молекула, изменившая мир, автор: Ник Лэйн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x