Александр Шульгин - TiHKAL
- Название:TiHKAL
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Шульгин - TiHKAL краткое содержание
TiHKAL — книга, написанная Александром Шульгиным и Анной Шульгиной в 1997, в которой исследуются психоделические триптамины. Она является продолжением вышедшей в 1991 году книги PiHKAL. Полное название книги «Tryptamines I Have Known And Loved: The Continuation» («Триптамины, которые я узнал и полюбил: Продолжение»).
Книга состоит из двух частей. Как и в PiHKAL, первая часть книги носит автобиографический характер, а во второй приводится детализированое описание синтеза более 50 психоделических веществ ряда триптамина (большинство из них впервые синтезировал лично Шульгин), а также дозировки, описание эффектов и прочие комментарии.
В данной электронной версии содержится только первая, художественная часть.
TiHKAL - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Я хотел бы завершить эту главу тремя примерами таких «двусмысленных» химических операций. В сущности, это будет рассказ о том, как человек "простирает руку свою" на иные живые системы, которые находятся между живым миром природы и неодушевленным миром лаборатории.
Первый пример касается недавнего сообщения об остроумном способе синтеза индолов, разработанном в Германии. Представьте себе доблестно растущую грибницу, которая умеет извлекать из своего рациона натуральный ДМТ и (с помощью активного, но не слишком подавляющего фермента, способного «прилеплять» к триптамину гидроксильную группу) превращать его в псилоцин. Эта грибница иногда справляется даже с 4-гидроксилированием, но это уже не важно. Главное, что исходным материалом этого хитроумного синтеза натуральные грибы избрали ДМТ. Конечный продукт синтеза — 4-гидрокси-ДМТ (псилоцин), и это все, что делает данный организм и на что он способен. Имеется исходный материал, совершается синтез, выходит конечный продукт. И этот продукт, который составляет самую суть знаменитых Волшебных Грибов, теперь можно выращивать на грядке или в лаборатории!
Но давайте слегка изменим исходный материал. Пусть наша маленькая грибная фабрика продолжает работать — мы лишь уберем из нее ДМТ и заменим его чем-нибудь вроде ДЕТ. Грибы продолжают работать, гидроксиляция происходит, но в результате мы получаем 4-гидрокси-ДЕТ — интересное вещество и активный психоделик, впервые синтезированный лабораториями Sandoz, но совершенно не встречающийся в природе. Не исключено, что грибница, политая MIPT, начнет производить 4-НО-MIPT — вещество, обладающее всеми свойствами псилоцина, но, насколько я знаю, до сих пор не запрещенное ни одним законодательством. Таким образом, можно эксплуатировать естественный процесс, обеспечив его искусственным исходным материалом — и в результате получить продукт, которого до сих пор не существовало в природе! И грибы, которые его синтезируют, так никогда и не узнают, что послужили почвой для чужого семени.
Как-то раз мне довелось узнать про одну очень занятную особенность нашего законодательства. Дело в том, что оно не запрещает никаких грибов. Запрет касается только активных компонентов этих грибов, т. е. псилоцина и псилоцибина. В законе упомянуты только четыре растения, и еще два проскользнули туда благодаря одной некрасивой махинации. Согласно Списку Веществ, Подлежащих Контролю (1970), это кактус пейот, конопля, опиумный мак и кустарник кока. В силу некоторых административных маневров сюда прибавились Tabernanthe iboga и Catha edulis, причем никто не оспаривал их включения в список. Но грибы Psilocybe spp. не упоминаются нигде. Они вполне законны. Хотя, если они содержат в себе вещества, упомянутые в Списке № 1, они вполне могут расцениваться как упаковка, в которой эти вещества транспортируются и доставляются к потребителю. А теперь подумаем вот о чем: если некая несчастная разновидность грибов содержит в себе запрещенные индольные соединения, то можно ли иметь при себе эти грибы на законных основаниях? Конечно, у нас уже есть Билль об Аналогах Веществ, Подлежащих Контролю (1986); но прежде, чем объявить то или иное вещество «аналогом» псилоцина, необходимо доказать, что оно действительно способно оказывать аналогичное воздействие. То есть, для того, чтобы синтез этого неизвестного вещества считался уголовным преступлением, необходимо преднамеренно испытать его на каком-нибудь человеке. Занятно, не правда ли? Ну, не станут же они (т. е. судьи) цитировать эту книгу! А даже если и станут, им всегда можно ответить, что это чистый художественный вымысел.
Однако перейдем ко второму примеру нашего диалога in vivo — in vitro. Одним из первых моих наставников был профессор медицинской химии из Сан-Франциско, который провел часть своей аспирантуры в Италии, в лаборатории некоего профессора микробиологии. Там он изучил процесс производства и использования культурной среды для выращивания грибков. В частности, он открыл, что некоторые грибки (например, эрготовые) замечательно выращиваются в хлебной квашне. Одним из них, насколько я помню, был эрготовый грибок Claviceps paspali. Из литра стерильной среды, зараженный чистой пробой данного организма, впоследствии выходили сотни миллиграмм пропаноламида лизергиновой кислоты. Затем (возможно, я не помню всех подробностей — как-никак, двадцать лет прошло) этот алкалоид кипятили в толуоле, чтобы отбить аминоспирт и выделить лизергиновую кислоту, которую, при должном старании, можно было превратить в несколько сотен миллиграмм ЛСД.
Господи! Всего лишь литр жидкой кашицы — и несколько десятков тысяч доз кислоты? Но мой наставник не осознавал своих возможностей и, быть может, не осознает их и до сих пор. Однако этот случай свидетельствует о том, что доступ к зловещему тартрату эрготамина не обязательно является прелюдией нелегального производства психоделиков.
И еще один пример. Почти все интересующие меня производные ДМТ синтезируются в растениях на основе аминокислоты триптофана. Чтобы произвести такую трансформацию, растение должно прибегнуть к одному из двух возможных приемов. Во-первых, оно может декарбоксилировать триптофан, получить триптамин и затем метилировать его; во-вторых, оно может метилировать триптофан, а затем декарбоксилировать его. Если при этом должно произойти ароматическое замещение (например, гидроксилирование в 5-позицию), то оно может иметь место на любой промежуточной стадии. Оба обязательных этапа реакции обеспечиваются ферментными системами, которые вполне резонно названы декарбоксилазами и N-метил-трансферазами. Короче говоря, превращение триптофана в ДМТ — это некий ферментативный процесс, при котором метиловые группы могут быть добавлены как до, так и после декарбоксилирования.
Исходным пунктом этого биосинтеза ДМТ служит триптофан. Это важнейшая аминокислота, один из основных составных блоков белка; сама по себе она используется как мягкое седативное средство и вот уже много лет продается в любом магазине здорового питания. Однако несколько лет назад ведущие японские фирмы сократили процесс ее синтеза на одну ступень, в результате чего аминокислота оказалась загрязнена следами токсичного побочного продукта и начала вызывать так называемый "эозинофило-миалгический синдром" (ЭМС). Источник заболевания вскоре был найден и устранен, и триптофан снова мог поступать в продажу как безрецептурный медикаментозный препарат. Но в период всеобщего замешательства FDA все-таки успел наложить ограничение на торговлю аминокислотами. И, хотя кризис уже остался позади, сегодня триптофан можно приобрести только при наличии рецепта. Мы еще вернемся к этой теме, когда будем обсуждать способы синтеза триптаминов.
Читать дальшеИнтервал:
Закладка: