Николай Глинка - Общая химия
- Название:Общая химия
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Николай Глинка - Общая химия краткое содержание
Учебное пособие предназначено для студентов нехимических специальностей высших учебных заведений. Оно может служить пособием для лиц, самостоятельно изучающих основы химии, и для учащихся химических техникумов и старших классов средней школы.
Легендарный учебник, переведенный на многие языки стран Европы, Азии, Африки и выпущенный общим тиражом свыше 5 миллионов экземпляров.
При изготовлении файла, использован сайт http://alnam.ru/book_chem.php
Общая химия - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Если исходный расплав содержит более 0.8% углерода (но менее чем 2.14%), например 1.5%, то распад аустенита начнется с выделения цементита (точка 3 на рис. 170). Вследствие выделения Fe 3C — фазы, богатой углеродом — остающийся аустенит обогащается железом, так что при дальнейшем охлаждении его состав изменяется по кривой ES. В точке S начинается выделение перлита. В итоге получается сталь со структурой, состоящей из цементита и перлита. Таким образом, области 6 на диаграмма (рис. 168) отвечает смесь кристаллов цементита и аустенита, а области 11 — смесь перлита с кристаллами цементита.
Обратимся теперь к сплавам, содержащим более 2.14% углерода. Первичная кристаллизация в этом случае заканчивается эвтектическим превращением при 1147°C, когда из расплава, содержащего 4,3% углерода (точка С на рис. 168), выделяется эвтектический сплав аустенита и цементита.
Если при этом исходить из расплава эвтектического состава (4.3% C), то кристаллизация начнется и закончится при одной и той же температуре 1147°C.
Рис. 169. Часть диаграммы состояния системы железо-углерод.
Рис.170. Часть диаграммы, состояния системы железо -углерод.
- 657 -
В случае сплавов, содержащих меньше 4.3% углерода (но больше 2.14%), образованию эвтектики будет предшествовать выделение аустенита. При содержании углерода выше 4.3% кристаллизация начнется с выделения цементита, но по достижении точки С на диаграмме также будет наблюдаться образование эвтектики. Таким образом, в результате кристаллизации жидких сплавов, содержащих более 2.14% углерода, первоначально получается структура, состоящая либо только из эвтектики, либо из эвтектики с кристаллами аустенита или цементита.
В то же время, как мы видели раньше, при кристаллизации жидких сплавов, содержащих меньше 2.14% углерода, первоначально получается аустенит. Это различие в структуре при высоких температурах создает различие в технологических и механических свойствах сплавов. Эвтектика делает сплавы нековкими, но ее низкая температура плавления облегчает применение высокоуглеродистых сплавов как литейных материалов. Железоуглеродные сплавы, содержащие меньше 2.14% углерода, называются сталями, а содержащие больше 2,14% углерода — чугунами.
Эта граница (2.14% углерода) относится к железоуглеродным сплавам, не содержащим других элементов. В присутствии третьего элемента вид диаграммы состояния изменяется, в частности границы устойчивости аустенита в некоторых случаях смещаются в сторону низких температур.
Закончим рассмотрение превращений, совершающихся в чугунах, при их охлаждении ниже 1147°C. При этой температуре растворимость углерода в γ-железе максимальна. Поэтому к моменту окончания первичной кристаллизации содержащейся в чугуне аустенит наиболее богат углеродом (2,14% ). При охлаждении ниже этой температуры растворимость углерода в аустените падает (кривая ES на рис. 168) и углерод выделяется из него, превращаясь обычно в цементит. По достижении температуры 727°C весь остающийся аустенит, в том числе входящий в состав эвтектики, превращается в перлит. Из сказанного следует, что области 7 отвечает смесь эвтектики с кристаллами аустенита и цементита, образовавшегося при распаде аустенита, области 8- смесь эвтектики с кристаллами цементита. Поскольку при температурах ниже 727°C аустенит эвтектики превращается в перлит, то областям 12 и 13, подобно области 11, отвечает смесь перлита и цементита. Однако сплавы, принадлежащие к той и другой области, несколько различаются по структуре. Это различие обусловлено тем, что цементит сплавов области 13 образуется при первичной кристаллизации, в области 12 — при распаде аустенита. Таким образом, при температурах ниже 727°C чугун состоит из цементита и перлита. Как мы увидим ниже (см. § 241), в некоторых случаях чугун может иметь и другую структуру.
Рассматривая превращения, происходящие при охлаждении расплавов различного состава, мы смогли выяснить, какие сплавы соответствуют различным областям диаграммы.
- 658 -
Но мы рассмотрели не все области диаграммы. Пользуясь тем же методом, нетрудно показать, какие сплавы отвечают остальным ее областям: области 1 соответствует смесь жидкого расплава и кристаллов высокотемпературного феррита, области 2 — смесь кристаллов высокотемпературного феррита и аустенита, области 4 — смесь жидкого сплава и кристаллов цементита, области 9 — смесь кристаллов феррита и цементита.
239. Производство чугуна и стали.
Железо имело промышленное применение уже до нашей эры. В древние времена его получали в размягченном пластичном состоянии в горнах, используя в качестве топлиза древесный уголь. Шлак отделяли, выдавливая его из губчатого железа ударами молота.
По мере развития техники производства железа постепенно повышалась температура, при которой велся процесс. Металл и шлак стали плавиться; стало возможным разделять их гораздо полнее. Но одновременно в металле повышалось содержание углерода и других примесей, — металл становился хрупким и нековким. Так получился чугун.
Позднее научились перерабатывать чугун; зародился двухступенчатый способ производства железа из руды. В принципе он сохраняется до настоящего времени: современная схема получения стали состоит из доменного процесса, в ходе которого из руды получается чугун, и сталеплавильного передела, приводящего к уменьшению в металле количества углерода и других примесей.
Современный высокий уровень металлургического производства основан на теоретических исследованиях и открытиях, сделанных в различных странах, и на богатом практическом опыте. Немалая роль в этом прогрессе принадлежит русским и советским ученым. Так, основоположником теории производства литой стали был П. П. Аносов. Академики А. А. Байков, М. А. Павлов, И. П. Бардин — авторы важнейших теоретических трудов по доменному и сталеплавильному производству.
В последние годы в нашей стране разработаны и внедрены новые технологические процессы выплавки чугуна и стали. Советские металлурги первыми широко применили природный газ для доменной плавки. У нас раньше, чем в США, были введены в строй современные доменные печи объемом 1300 м 3, а сейчас действуют печи объемом 5000 м 3.
За короткий исторический промежуток времени СССР вышел на второе место в мире по выпуску черных металлов.
Выплавка чугуна производится в огромных доменных печах, выложенных из огнеупорных кирпичей и достигающих 30 м высоты при внутреннем диаметре около 12 м.
Читать дальшеИнтервал:
Закладка: