Вадим Романов - Прикладные аспекты аварийных выбросов в атмосферу
- Название:Прикладные аспекты аварийных выбросов в атмосферу
- Автор:
- Жанр:
- Издательство:Физматкнига
- Год:2006
- Город:Москва
- ISBN:978-5-89155-166-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вадим Романов - Прикладные аспекты аварийных выбросов в атмосферу краткое содержание
Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.
Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.
Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.
Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.
Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.
Прикладные аспекты аварийных выбросов в атмосферу - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Для определения концентрации от выброса конечной длительности используется интеграл — свертка, записываемая так:

где l(t — τ) — функция, описывающая изменение мощности источника по времени.
В частности, выхлопная струя или струя дыма от пожара, как источник загрязняющей примеси, заменяется эквивалентным распределенным объемным источником.

В этом соотношении:
σ 2 z0и σ 2 y0— дисперсии распределений примеси по соответствующим осям в месте разрушения струи (в месте начала рассеивания ее вещества под действием атмосферной диффузии); х 0— расстояние от места инцидента до места разрушения струи в проекции на ось х.
Таким образом, конечность размеров источника учитывается введением дополнительных слагаемых в выражения для дисперсий выброса, т. е.

Центральным вопросом при использовании гауссовых моделей для описания полей концентраций является выбор параметров x 0, γ 0и σ x, σ y.
В методах Пасквилла [50] и Бызовой [143] параметры σ x, и σ yопределяются из экспериментов, а перемещение облака считается происходящим со скоростью ветра в слое диффузии на высоте источника.
В ряде работ при определении σ х,σ y, x 0и у 0учитывается реальный профиль ветра, а дисперсия вертикального распределения примеси определяется по формуле:
δ 2 z= Кt
где К = К х= К у= K z— эффективное значение коэффициента диффузии, определяемое состоянием атмосферы.
Кроме того, учитывается зависимость дисперсий клубов в виде облаков от скорости ветра с помощью соотношений:
σ 2= σ 2 T+ σ 2 дол
где σ 2 T— дисперсия, определяемая только коэффициентом горизонтальной турбулентной диффузии; σ 2 дол— дисперсия, описывающая рассеяние примеси по горизонтали в потоках с изменяющейся по высоте скоростью за счет вертикальной турбулентности.
При сильном перемешивании примеси по вертикали и большом градиенте скорости ветра вклад слагаемого σ 2 долв суммарную дисперсию может оказаться значительно большим, чем σ 2 T.
Такой метод позволяет учитывать реальную метеорологическую обстановку в месте инцидента, однако его вычислительный аппарат очень громоздок и сложен. Некоторые получаемые результаты, учитывая заложенную в расчет гауссову модель распределения концентраций, носят иллюстративный характер.
В работе [135], проведенной в районе испытаний ядерных энергетических установок, получена полуэмпирическая формула для расчетов концентраций радиоактивной примеси. Она записывается так:

В этой формуле предполагается использование следующих выражений для характеристик дисперсий загрязнений по координатным осям:

где U — скорость ветра в слое распространения струи ядерной энергетической установки; [U]=км/час; t — время процесса диффузии, час; г — расстояние выброса от места проведения работ, км; U x,U y— составляющие скорости ветра по осям х и у.
Недостатком этой формулы является узкий диапазон ее возможного применения — в месте испытаний. Кроме того, она не позволяет провести анализ влияния исходных параметров установки и среды на результаты расчетов.
Более универсальный характер имеет формула для расчета приземной концентрации на оси прохождения радиоактивного облака. Она получена путем обобщения экспериментальных после подземных ядерных взрывов [154]. В случае мгновенного выброса примеси получают:

где Q — общее количество выброшенной из источника примеси; U — как и ранее, скорость ветра в слое распространения загрязнений, считающаяся постоянной.
Дисперсии примеси описываются следующими временными зависимостями:
σ 2~ t 2при t малых;
σ 2~ 2Kt при t больших.
Распределение примеси вдоль направления распространения облака можно получить, интегрируя записанное выше уравнение по времени после подстановки в него значений метеопараметров и диффузии.
Приведем широко используемую для инженерных оценок эмпирическую формулу для расчета концентраций загрязняющих веществ при выбросах примеси из мощных источников типа дымовых труб тепловых электростанций или химических предприятий. Она имеет следующий вид:

где α и β — некоторые постоянные; U — скорость ветра на высоте флюгера; Q — мощность выброса.
Высота источника Н, входящая в эту формулу, складывается из высоты трубы и начального (динамичного) подъема струи ΔН:

где W 0,R 0, и ΔТ 0— начальные значения скорости газа струи, ее радиуса и перегрева; g — ускорение силы тяжести; θ — температура окружающего воздуха в абсолютной шкале.
Недостатком приведенных выше формул является отсутствие универсальности в выборе коэффициентов α и β, а также некорректность при U → 0 С уменьшением скорости ветра до нуля динамический подъем струи и концентрация загрязнений неограниченно возрастают. Вместе с тем известно, что при инверсионных состояниях атмосферы эти условия заведомо не выполняются, так как существует некоторый «потолок» для начального подъема примеси.
В заключение этого раздела приведем формулы для оценок влияния параметров диффузии на максимальную концентрацию примесей С mи расстояние х mот источника до этого максимума [150]. Зависящий от устойчивости атмосферы режим распространения описывается сигма — значениями σ уи σ z, входящими в расчетную формулу гауссовой модели дымового факела:

Наиболее используемыми являются аппроксимации сигма — значений степенными зависимости:
σ γ= A x aσ z= B x b
где а, в, А, В, Д — некоторые коэффициенты. При этом уравнения для расстояния х mи максимума концентрации С mимеют следующий вид:

Анализ этих соотношений показывает, что параметр диффузии в оказывает существенное влияние на расстояние до максимума концентрации примеси от источника.
Читать дальшеИнтервал:
Закладка: