Александр Перельман - Биокосные системы Земли
- Название:Биокосные системы Земли
- Автор:
- Жанр:
- Издательство:Наука
- Год:1977
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Перельман - Биокосные системы Земли краткое содержание
Живые организмы и неорганическая (косная) материя на Земле тесно связаны между собой и образуют в совокупности различные сложные природные системы, которые В. И. Вернадский назвал биокосными. В книге биокосные системы рассмотрены с позиций геохимии.
Характеризуя почвы, подземные воды, биосферу и другие биокосные системы, автор рассказывает не только о том, как перемещаются атомы в этих системах, но и как происходит при этом превращение энергии, изменение информации. В последнее десятилетие изучение биокосных систем приобрело особенно большое значение в связи с проблемой охраны природы и загрязнения окружающей среды. Этим вопросам также уделено внимание.
Биокосные системы Земли - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Во всех районах влажного и теплого климата в элювиальных почвах происходит быстрое разложение растительных остатков, в связи с чем в верхние горизонты почв поступает много гумусовых кислот и углекислого газа. Оснований для их нейтрализации, как правило, не хватает, и в горизонте А почв возникает кислая и слабокислая среда (рН = 4,0—6,5). По сравнению с атмосферными осадками кислотность возрастает в десятки и сотни раз. Мигрируя в нижние горизонты почвы, эти кислые растворы взаимодействуют с минералами горных пород, разлагают их с освобождением сильных катионов — кальция, натрия, магния, калия и др. В результате кислоты частично или полностью нейтрализуются, pH повышается. Так в элювиальных почвах гумидных ландшафтов возникает кислотно-щелочная зональность.
Но принципиально сходная картина наблюдается и в черноземных, и в болотных, и во многих других почвах: в верхних горизонтах среда более кислая (или менее щелочная), чем в нижних.
Кислотно-щелочная зональность характерна и для илов, механизм ее возникновения и последовательность горизонтов, в общем, те же, что и в почвах (более кислые горизонты сверху, менее кислые — снизу).
Четко выражена кислотно-щелочная зональность в коре выветривания влажных тропиков, в верхние горизонты которой просачиваются кислые растворы из почвы. В нижней части коры создастся нейтральная или даже щелочная среда, обусловленная как принесенными сверху катионами, так и продуктами разложения первичных минералов нижних горизонтов. Особенно наглядна эта кислотно-щелочная зональность в древней коре выветривания ультраосновных пород Урала. Из верхних горизонтов коры — зоны охр и нонтронитов магний выносился, и там господствовала кислая реакция, а в нижних горизонтах — «выщелоченных серпентинитах» и «зоне дезинтеграции» он осаждался в форме магнезита, доломита, гидромагнезита, керолита, магниевого монтмориллонита и даже брусита — Mg(OH) 2(последний только в зоне дезинтеграции). Так в результате приноса магния сверху в нижних горизонтах возникала щелочная среда, а в коре выветривания в целом — кислотно-щелочная зональность. Следовательно, кислое выщелачивание, удаляя катионы из верхних горизонтов, приводило к развитию щелочной среды в нижних горизонтах.
Кислотно-щелочная зональность характерна и для водоносных горизонтов, и для водных масс рек, озер, морей и океанов. Конкретные формы зональности различны, но ее причины везде обусловлены процессами разложения органических веществ, биологическим круговоротом атомов.
Геохимические барьеры.Как мы убедились, геохимия много внимания уделяет физико-химическим обстановкам биокосных систем, выделяя сернокислый, кислый, кальциевый, содовый и прочие их классы. Отдельные классы господствуют на огромных пространствах. Например, все воды Мирового океана относятся к одному соленосному классу. Постепенно выявилась необходимость изучения границ между геохимическими обстановками, т. е. тех участков, где один класс сменяется другим. Нередко к подобным границам приурочены концентрации химических элементов. Такие границы автор в 1961 г. предложил именовать геохимическими барьерами, которые можно определить так же, как участки земной коры, где на коротком расстоянии происходит резкое уменьшение интенсивности миграции химических элементов и как следствие их концентрация (рис. 29).
Понятие о геохимических барьерах является одной из методологических основ изучения процессов образования руд, а следовательно, и решения такого важного практического вопроса, как прогнозирование месторождений полезных ископаемых, т. е. выделение района для поисков данного типа руд. На этой основе намечается возможность прогнозирования новых генетических типов рудных месторождений, еще неизвестных в природе. Не менее велико значение понятия о барьерах и для выяснения природы геохимических аномалий, для разработки методики поисков месторождений. Это понятие важно и для решения проблем охраны природы и борьбы с загрязнением окружающей среды.
Те участки земной коры, которые мы теперь именуем барьерами, конечно, и раньше привлекали внимание ученых, но только как конкретное проявление различных процессов, как частные случаи. Теперь же они рассматриваются с общих позиций — как самостоятельный объект исследования, особое научное понятие. При классификации геохимических барьеров автор исходил из представлений о формах движения материи, что позволило выделить четыре основных типа барьеров — механические, физико-химические, биогеохимические (накопление элементов организмами) и техногенные. К последним относятся концентрации элементов, связанные с хозяйственной деятельностью человечества. Рассмотрим более подробно физико-химические барьеры.

Рис. 29. Геохимические барьеры в биосфере.
1 — механические; 2 — физико-химические; 3 — биогеохимические; 4 — техногенные; 5 — глубина проникновения кислородных вод в литосферу
Матричный принцип систематики концентрации элементов на физико-химических барьерах.Концентрация химических элементов на этих барьерах зависит, с одной стороны, от класса барьера, а с другой — от состава вод, поступающих к барьеру. На сочетании этих двух факторов и построена систематика типов концентрации элементов (табл. 6). В таблице отмечены элементы, легко мигрирующие в отдельных классах вод, а также «запрещенные ассоциации», миграция которых сильно затруднена или практически невозможна. Каждый тип концентрации обозначается двойным символом, включающим класс барьера и класс вод (например, A5 , В1 ). Понятно, что на барьере концентрируются не все элементы, подвижные в данном классе вод, а только некоторые из них. Они тоже указаны в таблице.
Кислородные и глеевые воды могут различаться по окислительно-восстановительным условиям, т. е. возможны слабоокислительные и резкоокислительные воды, слабоглеевые и резкоглеевые и т. д. Отсюда следует, что из слабоглеевых вод возможно осаждение элементов на глеевом барьере (с резкоглеевой средой). Эта комбинация и отмечена в табл. 6 ( C5 — C8 ). Из кислородных вод также возможны концентрации элементов на кислородном барьере ( А1 — А4 ).
Однако некоторые сочетания в природе не встречаются, как, например, E1 , Е2 (при встрече сильнокислых кислородных вод с кислым барьером элементы не концентрируются). Как видим, предлагаемая систематика построена по матричному принципу, который «организует мысль» и позволяет выделять новые типы концентраций, еще не установленные в природе, т. е. прогнозировать. В таблице выделено 86 типов концентраций элементов, однако некоторые из них пока не установлены. Пользуясь таблицей-матрицей, можно наметить условия их образования и сказать, где (в каких условиях) искать.
Читать дальшеИнтервал:
Закладка: