Александр Перельман - Биокосные системы Земли
- Название:Биокосные системы Земли
- Автор:
- Жанр:
- Издательство:Наука
- Год:1977
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Перельман - Биокосные системы Земли краткое содержание
Живые организмы и неорганическая (косная) материя на Земле тесно связаны между собой и образуют в совокупности различные сложные природные системы, которые В. И. Вернадский назвал биокосными. В книге биокосные системы рассмотрены с позиций геохимии.
Характеризуя почвы, подземные воды, биосферу и другие биокосные системы, автор рассказывает не только о том, как перемещаются атомы в этих системах, но и как происходит при этом превращение энергии, изменение информации. В последнее десятилетие изучение биокосных систем приобрело особенно большое значение в связи с проблемой охраны природы и загрязнения окружающей среды. Этим вопросам также уделено внимание.
Биокосные системы Земли - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Рудные месторождения и геохимические аномалии образуются на барьерах.С каждым типом концентрации (от А1 до H12 ) связано образование геохимических аномалий. Значительно реже на барьерах образуются месторождения полезных ископаемых, т. е. такие крупные концентрации, извлечение которых из недр оправдано экономически. Но из этого не следует, что геохимические аномалии не представляют практического интереса — часто они являются хорошими поисковыми признаками месторождений.
В тех местах, где глеевая обстановка на коротком расстоянии сменяется окислительной кислородной, например в краевых зонах болот, в местах разгрузки глубинных глеевых вод по разломам возникает кислородный геохимический барьер ( А ), на котором происходит окисление Fe 2+и Mn 2+. В результате образуются плохо растворимые гидроокислы трехвалентного железа (Fe 3+) и четырехвалентного марганца (Mn 4+).
Как показали исследования Ф. В. Чухрова, при быстром окислении железа глеевых вод сначала образуется минерал-эфемер — ферригидрит 2,5Fe 2O 3· 4,5H 2O, по кристаллической структуре сходный с гематитом. В процессе окисления важную роль играют особые железобактерии.
Тип А6 встречается почти повсеместно в лесных ландшафтах влажного климата. Большое количество разлагающихся органических веществ приводит здесь к широкому распространению оглеения в почвах, илах, грунтовых водах. Кислые глеевые воды обогащены Fe 2+, Mn 2+, органическими кислотами, придающими воде цвет крепкого чая. Там, где такие воды выходят на земную поверхность, например у основания склона, возникает кислородный барьер, осаждаются гидроокислы железа и марганца в виде конкреций и пластов бурых железняков. Глеевые грунтовые воды нередко разгружаются на дне рек и озер, где также возникает кислородный барьер.
Геохимик Т. Т. Тайсаев показал, что в Бурятии вблизи месторождений полезных ископаемых гидроокислы железа нередко обогащены рудными элементами. Это объясняется тем, что гидроокислы железа являются коллоидными минералами и легко сорбируют из воды многие металлы. Поэтому, анализируя гидроокислы железа на участках кислородных барьеров, можно искать месторождения. Это особая разновидность геохимических методов поисков рудных месторождений.
Глубинные восходящие глеевые воды, поднимаясь по разлому в месте контакта с кислородными водами, встречают кислородный барьер, на котором также осаждаются гидроокислы железа и марганца, приводящие к развитию ожелезнения в зонах разломов (рис. 30).
Нейтральные и щелочные глеевые воды характерны для районов распространения пород и почв, содержащих CaCO 3, например для болотных вод лесостепи и черноземных степей. Здесь железо менее подвижно, чем в тайге, а марганец подвижен. Поэтому на кислородном барьере концентрируются преимущественно гидроокислы марганца, содержащие примесь железа (тип А7 ).
Тип А8 характерен для болот с содовыми водами. Типы А9 — А12 возникают в местах разгрузки глубинных сероводородных вод — на контакте этих вод с кислородными подземными водами или с кислородом воздуха. Здесь особые бактерии окисляют сероводород до элементарной серы. Эти явления широко распространены на выходах сероводородных источников. В прошлые геологические эпохи в местах длительной разгрузки сероводородных вод возникали месторождения самородной серы, как, например, в Туркмении (Гаурдак, Серные Бугры), Ферганской долине (Шорсу). Образование сероводородных вод особенно энергично идет на участках нефтяных месторождений (углеводороды — пища для бактерий), где развиты гипсы — источник сульфатов. Поэтому именно к таким местам и приурочены серные месторождения (типы А11 и А12 , рис. 31).
В местах, где кислородные или глеевые воды встречают на пути своего движения сероводородную обстановку, или сульфиды, возникают сероводородные, или сульфидные барьеры ( В ). Образование сероводорода, как мы убедились, в основном связано с деятельностью бактерий, реже при этом имеют место химические реакции. Сероводородные (сульфидные) барьеры имеют большое практическое значение, так как на них образуются рудные тела некоторых месторождений меди, урана, селена и других элементов. Еще чаще встречаются геохимические аномалии этих элементов.
Если на возвышенности располагаются рудные тела, содержащие сульфиды железа, никеля, кобальта, меди и других металлов, то окисление этих руд приводит к образованию сернокислых грунтовых вод, обогащенных металлами. Двигаясь в сторону депрессий рельефа, такие воды встречают торфяное болото у подножия склона, где бактерии восстанавливают SO 4 2-с образованием Н 2S. В результате в краевой зоне болота возникает сероводородный барьер, на котором концентрируются принесенные металлы. Так образуется геохимическая аномалия В1 , оторванная от оруденения, которая служит важным поисковым признаком месторождений (рис. 32). Эти явления были изучены в районе медно-никелевых месторождений Кольского полуострова.
В зонах окисления сульфидных месторождений наблюдается и вертикальная миграция сернокислых растворов, которые, реагируя с первичными сульфидами, также дают сероводород:
MeS + H 2SO 4→ MeSO 4+ H 2S.
В результате в нижней части зоны окисления возникает сероводородный барьер, на котором осаждаются металлы, вынесенные из зоны окисления. Так образуются вторичные богатые сульфидные руды, местами представляющие главную ценность месторождения. В ряде случаев осаждение происходит и без участия сероводорода вследствие других процессов, но с обязательным участием сульфидов. Формирование этой зоны вторичного сульфидного обогащения связано, в частности, с обменными реакциями типа
CuSO 4+ MeS → CuS + MeSO 4.
Большое значение приобретают и различные микрогальванические пары, т. е. электрохимические явления. Поэтому можно говорить о сульфидном барьере, частным случаем которого является и сероводородный барьер.
Во многих озерных, морских и океанических илах, а также в морских осадочных породах встречаются сульфиды железа (пирит) и реже других металлов. Это позволяет утверждать, что в илах существовал сероводородный барьер, на котором из слабощелочной, морской или иловой воды осаждались металлы (тип В3 , отчасти В7 ). Напомним, что особенно энергично эти процессы протекали в конце рифея в так называемую вендскую эпоху и в начале палеозоя — в кембрии, ордовике, силуре (680—410 млн. лет назад). Именно в это время во многих морях шло накопление илов, обогащенных сульфидами металлов.
Подробно изучен тип концентрации В3 , с которым связано образование урановых руд в водоносных горизонтах артезианских бассейнов. Как показали исследования, сероводородный барьер здесь возникает на выклинивании зоны пластового окисления. Уран и его спутники — селен и молибден — осаждаются из инфильтрующихся вод. В сходных условиях могут формироваться и концентрации типа В4 , менее ясны типы В5 — B8 , они еще подлежат изучению.
Читать дальшеИнтервал:
Закладка: