Александр Перельман - Биокосные системы Земли
- Название:Биокосные системы Земли
- Автор:
- Жанр:
- Издательство:Наука
- Год:1977
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Перельман - Биокосные системы Земли краткое содержание
Живые организмы и неорганическая (косная) материя на Земле тесно связаны между собой и образуют в совокупности различные сложные природные системы, которые В. И. Вернадский назвал биокосными. В книге биокосные системы рассмотрены с позиций геохимии.
Характеризуя почвы, подземные воды, биосферу и другие биокосные системы, автор рассказывает не только о том, как перемещаются атомы в этих системах, но и как происходит при этом превращение энергии, изменение информации. В последнее десятилетие изучение биокосных систем приобрело особенно большое значение в связи с проблемой охраны природы и загрязнения окружающей среды. Этим вопросам также уделено внимание.
Биокосные системы Земли - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Сильно минерализованные воды соленых болот и солончаков, как правило, богаты сульфатами, т. е. содержат много иона SO 4 2-. В этих условиях в почвах развиваются особые бактерии, способные отнимать кислород у сульфатов и окислять с его помощью органические вещества. Такие бактерии получили наименование сульфатвосстанавливающих (десульфуризирующих), а сам процесс -десульфуризации. Примерная схема процесса следующая:
C 6H 12O 6+ 3Na 2SO 4→ 3CO 2+ 3Na 2CO 3+ 3H 2S + 3H 2O + Q кал.
Как видим, органический углерод окислился до CO 2, а сера восстановилась и вместо сульфат-иона, где сера шестивалентна, образовался сероводород, в котором сера двухвалентна. В такой обстановке трехвалентное железо тоже легко восстанавливается до двухвалентного, однако сизого глея не возникает, так как, соединяясь с сероводородом, железо дает нерастворимый, черный, мажущийся колоидный минерал гидротроилит — FeS· n H 2O. Этот минерал и придает горизонту черную окраску.
Теперь нам понятно, почему в солончаковом болоте нет глея — этому помешал сероводород, осадивший железо. Но почему же тогда гидротроилитовый горизонт не образуется в болотах севера и других районах влажного климата, почему там развивается глей? И на этот вопрос ответить совсем нетрудно. В районах влажного климата воды пресные, маломинерализованные, в них мало сульфатов, т. е. нет источников кислорода для сульфат-редуцирующих бактерий. Если даже они восстановят то небольшое количество сульфатов, которое имеется в болотной воде, то сероводорода образуется очень мало и он свяжет мало атомов двухвалентного железа. Большая часть железа будет в подвижной двухвалентной форме, и возникнет глей.
Сероводород осаждает не только железо, но и другие металлы, давая нерастворимые минералы — сульфиды. Так, с цинком он образует нерастворимый сфалерит (ZnS), со свинцом — галенит (PbS), с никелем — миллерит (NiS), с кобальтом — джайпурит (CoS) и т. д.
В почвах в основном присутствует гидротроилит (FeS· n H 2O), но в прочих биокосных системах накапливаются и другие сульфиды.
Соленые болота и солончаки с гидротроилитом не представляют интереса для сельского хозяйства (если, конечно, их не рассоляют и не осушают). Однако это не значит, что они совершенно не имеют практического значения. Напротив, они очень ценны, так как черные соленые гидротроилитовые грязи обладают замечательными целебными свойствами и помогают вылечивать тяжелые поражения суставов и другие заболевания. Под названием «лечебные грязи» они давно уже используются в медицине, в местах их распространения созданы грязевые курорты. Например, в Туркмении славится своими грязями солончак Моллакора в пустыне Каракумы, в Таджикистане — Оксукон в Ферганской долине. В лечебных целях местное население использовало грязи очень давно. Летом 1950 г. автору довелось побывать на Оксуконе. Процедура лечения в то время состояла в следующем: больного прямо на солончаке закапывали в горячую грязь. Через некоторое время он вылезал, смывал грязь рассолом, накопившимся тут же в ямке, надевал овчинный тулуп и шел в расположенную на берегу чайхану. Там после зеленого чая он начинал потеть, и вся соль вместе с потом смывалась с тела. На этом сеанс грязелечения заканчивался, после нескольких процедур многие больные чувствовали себя много лучше, некоторые расставались с костылями. Слава об Оксуконе гремела по Средней Азии.

Борис Лаврентьевич ИСАЧЕНКО (1871—1948)
В 1971 г. автору снова пришлось побывать на Оксуконе, где в это время уже существовал современный курорт. Больные жили в разноцветных красивых и удобных домиках на берегу солончака, их лечение проводилось под строгим врачебным контролем.
Ведущая роль микробиологических процессов в образовании черных соленых грязей была доказана трудами многих ученых, среди которых особенно выделяются работы крупного советского ботаника и микробиолога акад. Б. Л. Исаченко. Эта теория нашла блестящее подтверждение в серии лабораторных экспериментов. Например, микробиологи брали обыкновенную красную глину (образовавшуюся в окислительных условиях) и замешивали ее с сульфатной водой и органическим веществом. Так создавалась обстановка, необходимая для деятельности сульфатредуцирующих бактерий — они получали пищу (органические соединения) и сульфаты для дыхания (источник кислорода). Когда в эту мокрую глинистую массу вносили чистую культуру бактерий, они быстро размножались. В результате через некоторое время красная глина становилась черной, появлялся запах сероводорода. Так получалась искусственная лечебная грязь, которую можно было готовить далеко от мест естественного обитания сульфатредуцирующих бактерий, практически в любой лечебнице.
Итак, мы познакомились с третьей главнейшей окислительно-восстановительной обстановкой в почвах — восстановительной сероводородной, или сульфидной. Это позволяет выделить самостоятельный третий ряд почв — с восстановительной сероводородной обстановкой. Они встречаются не столь часто, как почвы двух предыдущих рядов, но по своеобразию (а это и важно для классификации) вполне заслуживают выделения в самостоятельный ряд.
К почвам третьего ряда относятся солончаки и соленые болота степей и пустынь. Но почвы этого ряда имеются и в районах влажного климата — там, где есть сильноминерализованные сульфатные воды и, следовательно, возможна деятельность десульфуризирующих бактерий. Таковы, например, почвы морских побережий, подтопляемые морскими водами, которые всегда содержат сульфаты. Подобные почвы встречаются и во влажных тропиках, например в мангровых зарослях, в тайге и даже в тундре по побережью Северного Ледовитого океана. Но, конечно, больше всего их в степях и пустынях — ведь там сульфатный состав вод определяется климатом и поэтому подчиняется закону зональности.
Может показаться, что различия почв второго (глеевого) и третьего (сульфидного, сероводородного) рядов не столь уж велики — ведь в обоих случаях в почвах преобладает восстановительная среда. Однако это не так. По ряду главнейших показателей глеевая и сероводородная обстановки резко отличаются друг от друга. И прежде всего это касается подвижности металлов. В то время как в глеевой обстановке многие металлы подвижны, образуя легкорастворимые соединения (особенно с органическими кислотами), в сероводородной обстановке большинство металлов малоподвижно и образует нерастворимые сульфиды.
Итак, геохимический анализ сущности почвообразования показал, что по окислительно-восстановительным Условиям почвы разделяются на три основных ряда:
Читать дальшеИнтервал:
Закладка: