Сергей Мейен - Из истории растительных династий
- Название:Из истории растительных династий
- Автор:
- Жанр:
- Издательство:Наука
- Год:1971
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Мейен - Из истории растительных династий краткое содержание
Книга написана живо и увлекательно. Она доступна широким кругам читателей, интересующихся далеким прошлым нашей планеты, и небесполезна ученым смежных отраслей науки
Из истории растительных династий - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Когда исследователь сталкивается со сложным явлением, то он прежде всего старается разложить его на составные части. Математик разлагает многочлен, химик выделяет отдельные элементарные реакции, генетик разбирает изменчивость и наследование отдельных признаков. Так же, очевидно, должны поступить и мы, анализируя эволюцию древних растений.
Первым, кто понял это и расчленил растение на элементарные органы (а точнее - на элементарные эволюционирующие единицы), был немецкий палеоботаник Г. Потонье. Он описал массу ископаемых растений, сделал исключительно много в познании пермских и каменноугольных отложений Европы, заложил основы современного учения о накоплении горючих ископаемых, написал массу научно-популярных статей, издавал журнал и, наконец, сделал огромный вклад в общую морфологию растений. Умер Г. Потонье в 1915 г., когда ему едва перевалило за пятьдесят.
Потонье понял, что лист представляет собой не изначально простое образование, а сложный синтетический орган, результат срастания элементарных структурных единиц. Эта идея была затем развита О. Линье в начале нашего века. Линье различал у растений несколько элементарных единиц. Одни дают начало крупным листьям, типа папоротников, и на них развиваются спорангии; другие представляют выросты первых и всегда лишены спорангиев (это, например, листья плауновидных); третьи дают начало корням. Исходя из своих построений, Линье фактически предсказал открытие псилофитов.
К сожалению, в начале нашего века мало кто из ботаников задумывался над такими проблемами. Поэтому идеи Потонье и Линье прошли почти незамеченными для современников. По выражению одного из современных ботаников, они были "гласом вопиющего в пустыни". Лишь в 30-х годах немецкий морфолог В. Циммерманн довел эти идеи до логического завершения, достаточно широко распропагандировал их и снабдил свои построения удачной терминологией. Простые и однообразные органы первых наземных растений - так сказать, элементарные эволюционирующие единицы - он назвал теломами. Из теломов, претерпевавших различные изменения, образовалось все разнообразие внешних форм у наземных растений. Эти изменения Циммерманн также разложил на элементарные процессы: слияние, изгиб, утолщение, стерилизация и др., которые обеспечивают растению лучшее поглощение света и лучшую защиту спорангиев. Действительно, если спорангий торчит на конце стебля, он максимально подвержен и температурным колебаниям, и различным механическим повреждениям. Загнутая ножка уже дает спорангию преимущество, а еще лучше, если он сидит в пазухе листа под его защитой.
То, что такие элементарные процессы могли происходить у самых разных растений, не вызывает сомнения, и палеоботанические наблюдения это подтверждают. Возьмем, например, плауновидные и членистостебельные. В их эволюции в течение палеозоя и мезозоя наблюдаются одинаковые процессы, приводящие к образованию очень сходных структур. Спорангии, сначала разбросанные по побегу группами, затем собираются в компактные шишечки на концах стеблей. В этих шишках листья преобразуются в специальные образования, защищающие спорангии. Сами спорангии со стебля переходят па эти защитные образования. Сходные процессы проходят у обеих групп и в микроскопической структуре стеблей. Возможно, что плауновидные и членистостебельные связаны общностью происхождения (есть древние растения, которые обнаруживают черты обеих групп), тем более понятно сходство в их эволюции. Таков один из основных источников параллелизма в развитии, но не единственный.
Каждый живой организм, будь то животное или растение, это не простой набор органов, независимо друг от друга выполняющих свои функции. Изменение одного органа вызывает в организации цепную реакцию. Приспособление растений к распространению семян ветром уменьшает размер семян, ведет к изменениям в структуре завязи; развитие новой группы мышц ведет к пропорциональному усилению соответствующего участка нервной системы и т. д. Такие зависимости неисчислимы, и их тем больше, чем более высоко развит организм. Вполне естественно, что реакция разных организмов на одно и то же изменение может оказаться одинаковой, если внутренние зависимости у них также одинаковые. В этом - второй источник параллелизма. К сожалению, здесь трудно привести наглядные примеры, так как для этого надо забираться в терминологические дебри.
Из сказанного не надо делать вывода, что органы вовсе не имеют никакой автономии и являются абсолютно необходимыми. В процессе эволюции они себя чувствуют порой вполне независимо. При этом у растений, даже у самых высокоорганизованных, зависимость между органами значительно меньше, чем у животных. Характерный, хотя и несколько грубый пример: если вы оторвете у собаки хвост, вам не удастся вырастить из него повой собаки, а из веток одного дерева, например тополя, можно вырастить целую рощу нормальных деревьев. Из-за высокой независимости органов среди растений встречаются удивительные существа, сочетающие архаичные и прогрессивные признаки (подобным дисгармоничным растением является, например, магнолия). Из этого вытекает, что зависимости между органами вряд ли сыграли ведущую роль в параллельной эволюции разных групп растений.
Третий источник параллелизма, по-видимому, кроется в генетических возможностях живых существ. Генетика сейчас активно популяризируется, с ее терминами все больше и больше знакомится широкая публика. Но на всякий случай приведем два определения. Нам понадобятся в рассуждениях термины "генотип" и "фенотип". Генотип - это вся наследственная информация, которую получает организм в момент его зарождения. В течение жизни она используется не полностью, а лишь в той мере, в какой это допускают условия среды. Результат взаимодействия наследственной информации и среды, т. е. сам выросший организм, называется фенотипом.
В ходе эволюции растения часто упрощают свою структуру. Это доказано, например, для спороносных органов клинолистов каменноугольного периода. В ходе такого упрощения, обычно происходящего через задержку в индивидуальном развитии органа или его частей, былая сложность остается в генотипе. В нем как бы законсервирована возможность последующего, если это станет необходимым, развития сложных структур. И если такая возможность вдруг осуществляется у уже разошедшихся от упрощенного предка ветвей, то нет ничего удивительного, что при этом образуются сходные признаки. Однако мы затрагиваем проблему, которая еще разработана очень мало. Имеющиеся иллюстрации касаются лишь современных растений, а палеоботаника здесь мало чем может помочь.
Читать дальшеИнтервал:
Закладка: