Рудольф Рэфф - Эмбрионы, гены и эволюция
- Название:Эмбрионы, гены и эволюция
- Автор:
- Жанр:
- Издательство:Мир
- Год:1986
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рудольф Рэфф - Эмбрионы, гены и эволюция краткое содержание
В книге американских авторов излагаются факты и идеи о связи генетики, эмбриологии и эволюции. Основное внимание уделено представлению о том, что эволюция идет по преимуществу путем отбора значительных перестроек морфологии, обусловленных мутациями регуляторных генов.
Для специалистов по молекулярной биологии, эмбриологов, генетиков, эволюционистов, для студентов и преподавателей биологических факультетов.
Эмбрионы, гены и эволюция - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Несколько лучше известны - главным образом благодаря работам Люшера (Luscher) - механизмы кастовой дифференциации у более примитивных термитов, обитающих под землей. Кастовая дифференциация у этих видов регулируется феромоном, подавляющим образование самок-заменительниц, и главными гормонами насекомых, действующими на развитие. По-видимому, превращение недифференцированных нимф в половых особей происходит под действием экдизона, тогда как высокие уровни ювенильного гормона вызывают превращение нимф в солдат. Таким образом, при эндокринной регуляции кастовой дифференциации, возможно, имеют место конкурентные взаимодействия экдизона и ювенильного гормона.
Роль гормонов в управлении морфогенетическими переключателями при развитии насекомых иллюстрируется далее работами Уилера и Ниджхаута (Wheeler, Nijhout), изучавших развитие солдат у муравья Pheidole bicarinata. Так же как у термитов, в семьях этих муравьев имеются рабочие, солдаты и половые особи. Оказалось, что солдат можно получить из недифференцированных личинок женского пола, если в определенный период последней личиночной стадии обработать их аналогом ювенильного гормона насекомых. Такая обработка приводит к увеличению продолжительности периода роста и изменению размеров личинок ко времени метаморфоза. Эти более крупные особи с более длительным периодом роста и есть солдаты. Как показали Дж. Гексли (J. Huxley) и Вилсон (Wilson), у муравьев аллометрические кривые рабочих особей и солдат совпадают (см. рис. 2-10). Огромные размеры челюстей и головы у солдат - следствие их более крупных общих размеров. У некоторых видов муравьев ситуация более сложная, потому что наклон аллометрических кривых изменяется с увеличением размеров. Известны двух- и трехфазные аллометрические зависимости. Изменение уровней гормонов позволяет установить пороги, с помощью которых муравьиная семья может «выбирать» морфологию, которую приобретает данная личинка во взрослом состоянии.

Рис. 9-9.Развитие дифференциации, приводящее к образованию различных каст у термита Amitermes atlanticus. Все касты в начале развития морфологически одинаковы, но к концу развития приобретают различную морфологию. А. Царица. Б и В. Самки-заменительницы. Г. Рабочий. Д. Солдат (Skaife, 1955; с изменениями).
Это всего лишь два из множества примеров, когда в процессе онтогенеза, направляемого единственным геномом, происходит выбор фенотипа. Потенциальные возможности, возникающие при этом для эволюционных изменений морфологии, очевидны; в гл. 6 были приведены примеры эволюции, связанной с пластичностью, которая создается переключениями развития, ведущими к различным функциональным морфологиям.
Здесь следует привести еще один пример, показывающий, что запрограммированные изменения онтогенеза можно обнаружить и у ископаемых организмов. На рис. 9-10 изображены два аммонита с гетероморфными раковинами, которые когда-то украшали собой позднемеловые моря в западной части Северной Америки. В этих раковинах запечатлена история развития животных, которые их секретировали. Обе раковины свидетельствуют о том, что это развитие делилось на три последовательных периода, причем для каждого был характерен свой особый тип роста. Вначале раковина росла по прямой, а затем в какой-то дискретный момент развития программа роста переключалась и раковина приобретала форму тортикона. Наконец, по мере приближения моллюска к зрелости направление роста вновь изменялось, что приводило к образованию терминальной U-образной жилой камеры. Помимо эстетической привлекательности раковин этих аммонитов они показывают, сколь значительной была морфогенетическая пластичность отдельного вида, допускавшая такие эволюционные изменения формы. Быстрая эволюция гетероморфов, представленная на рис. 2-4, позволяет предполагать, что в эволюции аммонитов использовалась пластичность, создаваемая переключениями с одного типа роста на другой.

Рис. 9-10.Два гетероморфных меловых аммонита из Среднего Запада Северной Америки. У обоих видов Didymoceras nebrascense (А) и D. stephensoni (Б) для раннего периода развития раковины был характерен рост по прямой; затем его сменял период роста по спирали и, наконец, в период зрелости происходило образование последнего витка в иной плоскости (Gill, Cobban, 1973; Scott, Cobban, 1965).
В гл. 7 - 9 мы хотели продемонстрировать, что гены в самом деле контролируют онтогенез и притом весьма специфическими способами, т. е. что существует такое явление, как генетически детерминированная программа развития. Исследование этой генетической программы путем анализа мутаций, воздействующих на развитие, показало, что, хотя мутантные аллели многих генов нарушают развитие, существует небольшая группа генов, мутации которых вызывают совершенно новые эффекты. Эти гены, примером которых служат гомеозисные комплексы дрозофилы, действуют, подобно переключателям, специфицируя альтернативные типы морфогенеза. Мы подробно рассмотрели характеристики гомеозисных генов, потому что это наиболее глубоко изученные гены-переключатели, связанные с развитием. У других организмов также имеются гены-переключатели, которые, вероятно, играют важную роль в принятии решений в процессе развития, но эти гены менее изучены.
Интересная особенность генов дрозофилы, которые «принимают решения» при переключениях, связанных с детерминацией числа сегментов, их полярности и индивидуальных особенностей, состоит в том, что эти гены служат как бы для расшифровки позиционной информации. Как было показано в гл. 4, позиционная информация представляет собой важный элемент развития широкого филогенетического спектра организмов. Однако большинство беспозвоночных и позвоночных животных, служащих классическими объектами исследования в эмбриологии, слишком слабо изучены генетически, чтобы можно было расчленить генетические программы, участвующие в установлении и расшифровке пространственной организации; такую возможность предоставляет только дрозофила, чем и объясняется наша «приверженность к мухам».
Процессы развития можно анализировать классическими генетическими методами, позволяющими выявить гены, несущие регуляторные функции в живом организме. Однако при анализе генной экспрессии мы не ограничены этими методами. В сущности, при изучении большинства организмов следует пользоваться другими методами. Успехи в разработке методов клонирования генов и в тонких исследованиях ДНК и РНК дают возможность изучать гены и генную экспрессию непосредственно в процессе развития. Результаты таких работ обсуждаются в гл. 10 и 11. В гл. 12 сделана попытка свести воедино и переосмыслить материал этих и других глав, положив начало созданию эмбриогенетической основы морфологической эволюции.
Читать дальшеИнтервал:
Закладка: