Девид Дойч - Структура реальности

Тут можно читать онлайн Девид Дойч - Структура реальности - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство РХД, год 2001. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Структура реальности
  • Автор:
  • Жанр:
  • Издательство:
    РХД
  • Год:
    2001
  • Город:
    Москва-Ижевск
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Девид Дойч - Структура реальности краткое содержание

Структура реальности - описание и краткое содержание, автор Девид Дойч, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Предлагаемая Вашему вниманию книга известного специалиста по квантовым компьютерам и квантовым вычислениям Дэвида Дойча своим выходом во многом обязана поддержке ректора Московского Государственного университета академика РАН В. А. Садовничего. В этой книге автор не только систематически рассматривает физические принципы нового описания реальности, но и предлагает свои любопытные философские рассуждения. Более подробно с различными аспектами квантовых компьютеров и квантовых вычислений читатель может ознакомиться на страницах журнала «Квантовые компьютеры и квантовые вычисления», который выпускается научно-издательским центром «Регулярная и хаотическая динамика».

Структура реальности - читать онлайн бесплатно ознакомительный отрывок

Структура реальности - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Девид Дойч
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как я уже сказал, не существует такого метода доказательства как «индукция». Идея доказательства каким-то образом достигнутой «почти-определенности» в науке – миф. Каким образом я мог бы «почти-определенно» доказать, что завтра не опубликуют удивительную новую физическую теорию, опровергающую мои самые неоспоримые допущения относительно реальности? Или то, что я не нахожусь внутри генератора виртуальной реальности? Но я говорю все это не для того, чтобы показать, что научное знание действительно «второсортно». Ибо идея о том, что математика дает определенности – это тоже миф.

С древних времен идея о привилегированном статусе математического знания часто ассоциировалась с идеей о том, что некоторые абстрактные категории, по крайней мере, не просто являются частью структуры реальности, но даже более реальны, чем физический мир. Пифагор считал, что регулярности в природе есть выражение математических отношений между натуральными числами. «Все вещи есть числа» – таков был его девиз. Он не имел это в виду буквально, однако Платон пошел еще дальше и отрицал реальность физического мира вообще. Он считал, что наши мнимые ощущения этого мира ничего не стоят и вводят в заблуждение, и доказывал, что физические объекты и явления, которые мы понимаем, – всего лишь «тени» несовершенных копий их истинных сущностей («Форм» или «Идей»), существующих в отдельной области, которая и есть истинная реальность. В этой области, кроме всего прочего, существуют Формы чистых чисел, таких, как 1, 2, 3, ... , и Формы математических действий, таких, как сложение и умножение. Мы можем воспринять некоторые тени этих Форм, когда кладем на стол одно яблоко, потом еще одно и видим, что на столе два яблока. Однако яблоки выражают «наличие одного» и «наличие двух» (и, в данном случае, «наличие яблок») несовершенно. Они не являются совершенно идентичными, а потому, в действительности на столе никогда нет двух примеров чего-либо. На это можно возразить, что число два можно также представить, положив на стол два различных объекта. Но и такое представление несовершенно, потому что в этом случае мы должны допустить, что на столе также есть клетки, отпавшие от яблок, пыль и воздух. В отличие от Пифагора. Платон занимался не только натуральными числами. Его реальность содержала Формы всех понятий. Например, она содержала Форму совершенного круга. «Круги», которые мы видим, никогда не являются действительно кругами. Они не совершенно круглые, не совершенно плоские; у них есть конечная толщина и т.д. Все они несовершенны.

Затем Платон указал задачу. Принимая во внимание все это Земное несовершенство (и он мог бы добавить, наш несовершенный сенсорный доступ даже к Земным кругам), как вообще мы можем знать то, что мы знаем о реальных, совершенных кругах? Очевидно, что мы обладаем знанием о них, но каким образом? Где Евклид приобрел знание геометрии, которое выразил в своих знаменитых аксиомах, когда у него не было ни истинных кругов, ни точек, ни прямых? Откуда исходит эта определенность математического доказательства, если никто не способен ощутить те абстрактные категории, на которые оно ссылается? Ответ Платона заключался в том, что мы получаем все это знание не из этого мира теней и иллюзий. Мы получаем его непосредственно из самого мира Форм. Мы обладаем совершенным врожденным знанием того мира, которое, как он считал, забывается при рождении, а затем скрывается под слоями ошибок, вызванных тем, что мы доверяем своим чувствам. Но реальность можно вспомнить, усердно применяя «разум», впоследствии дающий абсолютную определенность, которую никогда не может дать ощущение.

Интересно, кто-нибудь когда-нибудь верил в эту весьма сомнительную фантазию (включая самого Платона, который все-таки был очень компетентным философом, считавшим, что публике стоит говорить благородную ложь)? Тем не менее, поставленная им задача – как мы можем обладать знанием, не говоря уж об определенности, абстрактных категорий – достаточно реальна, а некоторые элементы предложенного им решения с тех пор стали частью общепринятой теории познания. В частности, фактически все математики до сегодняшнего дня без критики принимают основную идею того, что математическое и научное знание проистекают из различных источников и что «особый» источник математического знания дает ему абсолют ную определенность. Сейчас этот источник математики называют ма тематической интуицией, однако он играет ту же самую роль, что и «воспоминания» Платона об области Форм.

Математики много и мучительно спорили о том, открытия каких в точности видов совершенно надежного знания можно ожидать от нашей математической интуиции. Другими словами, они согласны, что математическая интуиция – источник абсолютной определенности, но не могут прийти к соглашению относительно того, что она им говорит! Очевидно, что это повод для бесконечных, неразрешимых споров.

Большая часть таких споров неизбежно касалась обоснованности или необоснованности различных методов доказательства. Одно из разногласий было связано с так называемыми «мнимыми» числами. Новые Теоремы об обычных, «вещественных» числах доказывали, обращаясь на промежуточных этапах доказательства к свойствам мнимых чисел. Например, таким образом были доказаны первые теоремы о распределении простых чисел. Однако некоторые математики возражали против мнимых чисел на том основании, что они не реальны. (Современная терминология все еще отражает это старое разногласие даже сейчас, когда мы считаем, что мнимые числа так же реальны, как и «вещественные»). Я полагаю, что учителя в школе говорили этим математикам, что нельзя извлекать квадратный корень из минус одного, и, поэтому они не понимали, почему кто-либо другой может это сделать. Нет сомнения в том, что они называли этот злостный порыв «математической интуицией». Однако другие математики обладали другой интуицией. Они понимали, что такое мнимые числа, и как они согласуются с вещественными. Почему, думали они, человеку не следует определять новые абстрактные категории, имеющие свойства, которые он предпочитает? Безусловно единственным законным основанием запретить это была бы логическая несовместимость требуемых свойств. (Это, по существу, современное мнение, выработанное всеобщими усилиями, математик Джон Хортон Конуэй грубо назвал «Движением Освобождения „Математиков“). Однако общеизвестно, что никто не доказал и то, что обычная арифметика натуральных чисел является самосогласованной.

Подобным разногласиям подверглась и обоснованность использования бесконечных чисел, а также множеств, содержащих бесконечно много элементов, и бесконечно малых величин, используемых при исчислении. Дэвид Гильберт, великий немецкий математик, предоставивший большую часть инфраструктуры как общей теории относительности, так и квантовой теории, заметил, что «математическая литература переполнена бессмыслицами и нелепостями, проистекающими из бесконечности». Некоторые математики, как мы увидим, вовсе отрицали обоснованность рассуждения о бесконечных категориях. Легкий доступ к чистой математике в девятнадцатом веке мало что сделал для разрешения этих разногласий. Напротив, он только усугубил их и породил новые. По мере своего усложнения математическое рассуждение неизбежно удалялось от повседневной интуиции, что возымело два важных противоположных следствия. Во-первых, математики стали более педантичными в отношении доказательств, которые, прежде чем быть принятыми, подвергались все более суровым проверкам на соответствие нормам точности. Но во-вторых, изобрели более мощные методы доказательства, которые не всегда можно было обосновать с помощью существующих методов. И из-за этого часто возникали сомнения, был ли какой-то частный метод доказательства, несмотря на свою самоочевидность, абсолютно безошибочным.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Девид Дойч читать все книги автора по порядку

Девид Дойч - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Структура реальности отзывы


Отзывы читателей о книге Структура реальности, автор: Девид Дойч. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x