Виктор Петров - Искусственный спутник земли
- Название:Искусственный спутник земли
- Автор:
- Жанр:
- Издательство:Военное Издательство Министерства обороны Союза ССР
- Год:1958
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Петров - Искусственный спутник земли краткое содержание
В ней последовательно излагаются этапы освоения космоса, начиная с осуществления необитаемого и неавтоматизированного искусственного спутника Земли и кончая изложением вопросов создания межпланетных станций и космических кораблей. subtitle
3 0
/i/64/718764/Grinya2003.png
0
/i/64/718764/CoolReader.png
Искусственный спутник земли - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Необходимо так организовать взлет ракеты-носителя, чтобы в минимально возможное время доставить спутник на орбиту и чтобы он имел необходимую горизонтальную скорость полета.
Перед запуском ракеты ученые в зависимости от избранной орбиты производят целую серию сложнейших расчетов, предварительно вычисляя наиболее выгодную (оптимальную) траекторию выхода ракеты на орбиту (рис. 19).

Первый участок полета ракеты избирается вертикальным для того, чтобы ракета возможно скорее преодолела плотные слои атмосферы, однако этот участок обычно не велик и составляет около 20 км.
Как только ракета выйдет в более разреженные слои атмосферы, она с помощью автопилота будет постепенно наклоняться, с тем чтобы, достигнув орбиты, выйти на нее в горизонтальном положении с большой скоростью полета. В этих расчетах учитываются также потери скорости ракеты в результате сопротивления воздуха и гравитационного сноса и точно определяется режим работы двигателей ракеты, чтобы они могли обеспечить получение на орбите круговой скорости, при которой центробежная сила уравновесила бы силу притяжения Земли.
Мы уже говорили, что минимальное значение характеристической скорости — 7,9 км/сек (так называемую первую космическую скорость) имеет ракета, посылающая ИСЗ на орбиту, проходящую непосредственно у поверхности Земли. Значение характеристической скорости ракеты зависит от расстояния орбиты спутника до Земли. Например, для высоты 1730 км она равна 8716 м/сек, а для высоты 35 800 км — 10 709 м/сек. Наконец при скорости 11 190 м/сек (вторая космическая скорость) ракета может улететь в космос.
Кроме того, задача инженеров, рассчитывающих программу взлета ракеты-носителя ИСЗ на орбиту, состоит в том, чтобы траектория взлета была такой, при которой потери скорости от сопротивления воздуха и притяжения Земли составляли бы не более нескольких процентов от величины характеристической скорости. Таким образом, для того чтобы получить действительную скорость ракеты для запуска спутника на данную орбиту, расчетное значение характеристической скорости необходимо увеличить. Для взятых в качестве примера орбит (1730 км и 35 800 км) орбитальные скорости соответственно будут несколько увеличены.
Оказывается, что далеко не безразлично, в какую сторону запустить ракету-носитель ИСЗ.
Если ракету запустить в сторону вращения Земли (рис. 20), то можно получить дополнительное, «бесплатное» приращение скорости ракеты за счет скорости вращения Земли. Величина этого приращения зависит от широты места запуска. На экваторе, например, оно имеет максимальное значение и равно 463 м/сек. Это больше скорости некоторых современных истребителей. По мере приближения к полюсам приращение скорости убывает.

Может возникнуть вопрос: а как же наши самолеты? Ведь они летают в самых разнообразных направлениях, и мы обычно не интересуемся тем, совпадает ли их полет с направлением вращения Земли или нет.
Действительно, современным самолетам безразлично, в какую сторону лететь. Если мы говорим, что самолет летит со скоростью 1000 км/час, то полагаем, что он эту скорость имеет независимо от направления полета. Практически мы совершенно правы.
Но именно только практически. Теоретически же самолет, летящий по направлению вращения Земли, будет всегда несколько легче, а летящий в обратном направлении — немного тяжелее. Однако при существующих скоростях самолета эти изменения его веса настолько ничтожны, что их можно не учитывать.
Представим себе самолет, который будет обладать скоростью, скажем, в 3–4 раза большей скорости звука.
Появление таких самолетов дело совсем недалекого будущего. Как показывают расчеты, в таком случае влияние центробежной силы уже обязательно придется учитывать конструкторам. Вес самолета может уменьшиться или увеличиться приблизительно на 2% в зависимости от направления полета на восток или на запад, а это влечет за собой (в случае выигрыша в весе) и увеличение дальности полета и возможность создания увеличенных запасов топлива. Можно, например, сказать по грубым прикидкам, что самолет, делающий перелет вокруг земного шара в направлении на восток, может пролететь приблизительно на 800 км дальше, если он будет обладать указанной выше скоростью. С дальнейшим ростом скоростей этот фактор будет приобретать все большее и большее значение.
Мы уже упоминали, что орбиты спутников могут быть не только круговыми, но и эллиптическими. Эллиптические орбиты мы получим в том случае, если скорость, приданная ракете, будет несколько выше окружной или скорость в момент окончания работы двигателя не будет направлена по касательной к круговой орбите. Тогда, вместо того чтобы остаться на круговой орбите, ракета устремится дальше, и траектория ее полета будет уже не окружностью, а эллипсом.
Ближайшая к Земле точка на эллиптической орбите называется перигеем, а наиболее от нее удаленная — апогеем, причем перигей может быть гораздо ближе к Земле, а апогей гораздо дальше от Земли, чем первоначальная круговая орбита. Один из вариантов запуска ракет на орбиту, отстоящую на 1730 км от Земли, предусматривает, что первоначально ракета полетит по эллиптической орбите, причем перигей в этом случае составляет около 102 км, а апогей — 1730 км. Двигатели, разгоняющие ракету до характеристической для этой орбиты скорости, включаются в момент достижения ракетой апогея. В СССР в 1957 г. успешно осуществлен запуск первых ИСЗ. В США в это время публиковались в печати многочисленные проекты запуска ИСЗ.
Приведем описание одного из проектов запуска американской ракеты-носителя ИСЗ «Авангард», с которой мы уже знакомы. Запуск ракеты-носителя ИСЗ предполагалось осуществить в 1958 г. на базе ВВС США в Патрике (штат Флорида) в направлении от 28 до 35° к юго-востоку (азимут 118–125°). Запуск именно в этом направлении может обеспечить, по мнению ученых США, дополнительный прирост скорости за счет вращения Земли, а также позволит удобно наблюдать спутник.
Ракета должна стартовать вертикально, как показано на рис. 21, а затем начнет постепенно наклоняться.

В момент окончания работы двигателя первой ступени на высоте 58 км от земли угол наклона ракеты составит 45° к вертикали. Затем первая ступень ракеты отделяется, начинают работать двигатели второй ступени. Первая ступень упадет на землю в 370 км от места старта. Вторая ступень будет подниматься по траектории с возрастающим углом наклона; двигатель кончит работать на высоте 225 км. После этого ракета по инерции поднимется до максимальной высоты 480 км и окажется в точке, отстоящей на 1125 км от места старта. В этой точке начнет работать двигатель третьей ступени (рис. 22).
Читать дальшеИнтервал:
Закладка: