Андрей Несмеянов - Радиоактивные изотопы и их применение
- Название:Радиоактивные изотопы и их применение
- Автор:
- Жанр:
- Издательство:Военное Издательство Министерства обороны Союза ССР
- Год:1958
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Андрей Несмеянов - Радиоактивные изотопы и их применение краткое содержание
Широта научных проблем, изучаемых с помощью изотопов, неизмерима: здесь исследования целительных свойств лекарств и открытие загадки древних статуй, анализ глубоководных морских отложений и раскрытие тайны происхождения живого и неживого, обмен веществ в микроскопической клетке и величественные проблемы происхождения вселенной.
При помощи радиоактивных изотопов могут быть вскрыты интимнейшие механизмы биохимических процессов в растениях и животных. Излучение радиоактивного распада оказывается в руках исследователей одним из сильнейших рычагов искусственной переделки наследственной природы организмов. Используя эти средства, наука вплотную подошла к решению самых глубоких проблем биологии, связанных с объяснением важнейших физиологических процессов.
Даже такая, казалось бы далекая от атомной физики отрасль, как агрономия, уже не может обойтись без применения различных средств атомной техники.
Радиоактивные изотопы — это важный инструмент современной науки, умножающий человеческую власть над природой. subtitle
6 0
/i/55/718755/Grinya2003.png
0
/i/55/718755/CoolReader.png
Радиоактивные изотопы и их применение - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Альфа- и бета-распад сопровождается в большинстве случаев гамма-излучением.
При гамма-излучении энергия ядра атома уменьшается, но состав ядра остается неизменным.
Правило сдвига дало возможность найти место в периодической системе элементов Менделеева для всех вновь открытых изотопов.
3. Семейства радиоактивных изотоповПравило сдвига позволило ученым установить связь между целыми группами радиоактивных изотопов. Так, оказалось, что торий с массовым числом 232, выбрасывая альфа-частицу, превращается в изотоп радия — мезоторий 1 с массовым числом 228 и порядковым номером 88. Мезоторий 1 в свою очередь выбрасывает электрон и превращается в мезоторий 2 — изотоп актиния. Мезоторий 2 испускает бета-лучи и превращается в радиоторий.
Цепь превращений идет от одного радиоактивного изотопа к другому, пока в результате радиоактивного распада не образуется устойчивый изотоп.
Так получается ряд радиоактивных изотопов, или радиоактивное семейство.
Исследуя процессы радиоактивного распада, ученые установили три ряда радиоактивных элементов, которые находятся в природе: ряд урана, ряд тория и ряд актиноурана.
Уран 238, торий и актиноуран (уран 235) являются родоначальниками этих рядов, и каждый ряд заканчивается нерадиоактивным изотопом свинца.
Одним из важных членов семейства урана является изотоп радия с массовым числом 226; он широко применяется в медицине, технике и в научных изысканиях.
Позднее искусственным путем было получено новое семейство радиоактивных изотопов — семейство нептуния; оно заканчивается устойчивым изотопом висмута.
На рис. 5 и 6 приведены радиоактивные семейства. В кружках указаны названия элементов, масса атома и заряд ядра. Стрелки показывают, в каком направлении идет превращение, значки α и β около стрелок — род излучения, а цифры — периоды полураспада.


В каждом радиоактивном семействе есть изотопы с самыми различными периодами полураспада. Уран 238 имеет период полураспада, равный 4,5 миллиарда лет; количество атомов урана изменяется настолько медленно, что даже в течение многих веков убыль их практически нельзя заметить. Период полураспада радия — 1590 лет, а радия А — всего 3 минуты.
С течением времени в смеси изотопов радиоактивного ряда наступает так называемое радиоактивное равновесие. Это значит, что количество атомов того или иного радиоактивного элемента в смеси остается практически неизменным; сколько атомов получается, столько же распадается. Если из смеси удалить один из изотопов, то равновесие нарушается, но через определенное время оно наступает вновь.
Чтобы понять это, сравним радиоактивное семейство с системой бассейнов с водой, которые расположены друг под другом и связаны между собой трубами различного сечения. Представим, что количество воды в них соответствует количеству радиоактивных изотопов, а сечения соединяющих труб — постоянным их распада. Учтем, что скорость вытекания зависит от напора воды: чем выше уровень воды в бассейне и чем шире труба, тем быстрее течет из него вода. Допустим, что в первом бассейне находится такое большое количество воды, что убыль ее практически не влияет на уровень воды. Из первого бассейна вода протекает во второй по трубе сечением, равным 2 кв. сантиметрам. Из второго бассейна вода течет в третий по трубе сечением, равным 1 кв. сантиметру. Труба, соединяющая третий бассейн с четвертым, имеет сечение 4 кв. сантиметра.
Вначале вода во втором бассейне будет прибывать, но одновременно она будет вытекать в третий бассейн. Когда высота уровня во втором бассейне станет вчетверо больше, чем в первом, скорость протока воды во второй бассейн будет равна скорости вытекания из него в третий. В первом бассейне уровень в 4 раза ниже, чем во втором, но зато сечение трубы в 2 раза больше. Поэтому вода во втором бассейне будет сохранять один и тот же уровень.
То же можно сказать про третий бассейн. Вода в нем будет прибывать до тех пор, пока уровень ее не достигнет высоты, в 4 раза меньшей, чем в первом бассейне.
Когда уровни будут находиться в соотношении 4:16:1, скорости притока и вытекания воды для каждого бассейна станут равны. Наступит равновесие.
Если теперь из второго бассейна часть воды вычерпать, то равновесие будет нарушено: скорость поступления воды во второй бассейн будет прежней, но скорость вытекания уменьшится и в третьем бассейне вода начнет убывать. Однако через некоторое время уровень во втором бассейне повысится, и равновесие наступит вновь.
Подобное этому равновесие имеет место и при радиоактивном распаде. Чем больше период полураспада элемента, тем больше его находится в смеси. В семействе тория, например, из тория образуется в единицу времени столько атомов мезотория 1, сколько их распадается с образованием мезотория 2.
Уран, торий и актиноуран находились в земной коре многие тысячелетия, и за это время в радиоактивных семействах урана, тория и актиноурана установилось равновесие.
5. Азот превращается в кислородВ средние века алхимики занимались поисками способов превращения различных металлов в золото. Поиски эти были безуспешны, и начиная с XⅦ века многие ученые перестали верить в возможность превращения элементов. В XⅨ веке в науке утвердилось атомно-молекулярное учение. По этому учению составные части всякого вещества — атомы — считались неделимыми, следовательно, и превращение одного атома в другой оказывалось невозможным.
Но в XX веке, после того как было изучено явление радиоактивности и выяснилось сложное строение атома, ученые снова вернулись к мысли об искусственном превращении элементов.
Ядро атома нельзя разрушить ни нагреванием до нескольких тысяч градусов, ни охлаждением до самых низких температур, ни высоким или низким давлением. Для разрушения атомов нужна большая энергия. В руках человека до открытия радиоактивных элементов такой энергии не было.
В 1919 году английский физик Резерфорд решил использовать для разрушения атомов энергию радиоактивного излучения, именно энергию альфа-частиц. Быстролетящие, сравнительно тяжелые альфа-частицы могли служить миниатюрными снарядами, которые способны разрушить ядро и привести к образованию новых ядер.
Радиоактивный препарат, излучающий альфа-частицы, помещался в газ азот. Альфа-частицы, сталкиваясь с атомами азота, проникали в их ядра (рис. 7). Затем ядра раскалывались на два новых ядра: ядро атома кислорода и ядро атома водорода (или протон). Так впервые был проведен процесс превращения элементов. С помощью химических символов он может быть записан следующим образом:
Читать дальшеИнтервал:
Закладка: