Ефим Балабанов - Ядерные реакторы
- Название:Ядерные реакторы
- Автор:
- Жанр:
- Издательство:Военное Издательство Министерства обороны Союза ССР
- Год:1957
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ефим Балабанов - Ядерные реакторы краткое содержание
2 0
/i/47/718747/Grinya2003.png
0
/i/47/718747/CoolReader.png
Ядерные реакторы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Заряд ядра определяется количеством протонов, и любое уменьшение или увеличение их числа вызывает изменение числа электронов в электронной оболочке атома.
Поэтому такое изменение числа протонов меняет химические свойства атома. Происходит превращение атома одного элемента в другой.
Удаление или прибавление нейтронов в ядре не приводит к образованию нового химического элемента, так как заряд и, следовательно, номер элемента в периодической системе остаются прежними. Такие атомы отличаются друг от друга массами и, обладая одними и теми же химическими свойствами, являются разновидностями одного химического элемента. Эти разновидности называются изотопами, то есть веществами, находящимися в одной клетке периодической системы Менделеева. Каждый химический элемент, встречающийся в природе, представляет собой обычно смесь разновидностей этого элемента и является природной смесью изотопов.
У водорода, например, три изотопа, схемы атомов которых приведены на рис. 3. В ядре каждого изотопа водорода есть один протон, и поэтому во всех атомах существует по одному электрону, который уравновешивает положительный заряд ядра. Дейтерий — устойчивый изотоп водорода с массовым числом 2 — содержится в природном водороде в количестве 0,02 процента. Ядро его атома состоит из одного протона и нейтрона. Ядро сверхтяжелого радиоактивного водорода — трития состоит из трех частиц: одного протона и двух нейтронов. Трития в природной смеси водорода почти нет. Но сейчас он может быть получен в довольно больших количествах искусственно в ядерных реакторах.

Число устойчивых изотопов у отдельных химических элементов, например у олова, доходит до 10.
В настоящее время физикам известно около трехсот устойчивых и примерно восемьсот радиоактивных изотопов.
Ядерные силы.Теперь мы уже знаем, что изотопов значительно больше, чем элементов. Но почему ядра одних изотопов устойчивы (и они встречаются в природе часто), а других — легко распадаются и радиоактивны?
Что удерживает частицы в атомном ядре?
Между протонами, так же как и между другими одноименно заряженными частицами, действуют отталкивающие электростатические силы, которые при малых размерах ядра должны быть достаточно велики. Конечно, эти силы не могут осуществлять связь между частицами в ядре. Для того чтобы ядро оставалось очень прочным и компактным, необходимы очень большие силы, которые притягивали бы друг к другу ядерные частицы. О природе этих сил мы пока еще знаем очень немного. Знаем, что в то время как электростатические силы (притяжения и отталкивания) действуют на довольно больших расстояниях, ядерные силы имеют существенное значение только при сближении ядерных частиц. Если радиус атома определяется электростатическими силами притяжения, действующими между отрицательно заряженным электроном и положительным ядром, и равен примерно одной стомиллионной доле сантиметра (10 -8сантиметра), то радиус ядра определяется действием ядерных сил и приблизительно равен одной тысячемиллиардной доле сантиметра (10 -12сантиметра) [1] В физике принято большие и малые числа обозначать в виде положительной или отрицательной степени числа 10. Например, число молекул в одном кубическом сантиметре газа (число Лошмидта) равно 27 000 000 000 000 000 000 — двадцать семь миллиардов миллиардов. Такое число трудно выговорить и гораздо проще его записать так: 2,7∙10 19 (два и семь десятых, умноженное на десять в девятнадцатой степени). Малые величины будут записываться как отрицательные степени числа 10. Так, в нашем случае радиус атома равен сантиметра, то есть единице, деленной на единицу с восемью нулями: 10 -8 (десять в степени минус восемь). В дальнейшем мы будем придерживаться этих обозначений.
.
Таким образом, как ни мал атом, на его диаметре можно уложить примерно 10 тысяч ядер.
Ядерные силы, по-видимому, могут быть объяснены взаимодействием протонов и нейтронов с какой-то третьей частицей. (В дальнейшем протоны и нейтроны мы иногда будем называть нуклонами.) Эта частица появляется при преобразовании протона в нейтрон или нейтрона в протон и является общей для двух взаимодействующих нуклонов. Таким образом, ядерные силы связаны с обменом частицами. Поэтому силы подобного типа называют обменными силами. Они весьма своеобразны и недостаточно наглядны в наших обычных представлениях. Для этих сил весьма характерно то, что их действие связано с обменом, с переменой ролей между двумя участвующими в этой связи нуклонами.
Протон и нейтрон непрерывно обмениваются друг с другом частицами, которые одновременно связаны с обоими нуклонами. По всей вероятности, такими частицами являются открытые в последние годы π-мезоны (пи-мезоны). Малый радиус действия ядерных сил объясняется тем, что π-мезоны — тяжелые частицы — не могут надолго покидать протоны и нейтроны. Вылетев, они либо возвратятся обратно, либо поглотятся другими ядерными частицами. Для последнего надо, чтобы нуклоны находились близко один от другого. Так осуществляется связь между ядерными частицами.
Ядерные силы имеют некоторое сходство с химическими силами, которые также являются обменными. В молекулах тоже происходит обмен частицами. Для примера можно взять ион молекулы водорода (рис. 4). Здесь имеются два протона вокруг которых вращается один электрон. Такой ион является вполне устойчивым образованием, и сила, которая определяет его устойчивость, связана с взаимодействием двух протонов с одним общим электроном. По-видимому, можно считать, что электрон вращается то вокруг одного, то вокруг другого протона. Здесь, так же как и в ядерных системах, сила связана с обменом частицей, с переходом электрона от одного протона к другому.

Прочность твердых тел, как известно, определяется электростатическими силами, действующими между атомами в веществе. Но ядерные силы в миллионы раз больше электростатических. Во столько же раз ядерное вещество прочнее самой крепкой стали. Если бы удалось изготовить из ядерного вещества ткань толщиной в одну десятую долю микрона (0,0001 миллиметра), то она была бы, безусловно, прочнее самой толстой брони. Правда, трудно представить себе военное судно, одетое такой броней, квадратный метр которой весит более 600 тысяч тонн.
Читать дальшеИнтервал:
Закладка: