Ефим Балабанов - Ядерные реакторы
- Название:Ядерные реакторы
- Автор:
- Жанр:
- Издательство:Военное Издательство Министерства обороны Союза ССР
- Год:1957
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ефим Балабанов - Ядерные реакторы краткое содержание
2 0
/i/47/718747/Grinya2003.png
0
/i/47/718747/CoolReader.png
Ядерные реакторы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Существует и обратное явление — «рождение» пары частиц (позитрона и электрона) при поглощении гамма-кванта каким-либо тяжелым ядром. Причем само ядро в этом «рождении» не участвует. Позитрон и электрон образуются вблизи ядра, в области действия электростатических сил его положительного заряда.
Опыты показали, что гамма-квант превращается в электрон и позитрон, сумма энергий и масс которых равна энергии и массе этого гамма-кванта.
Таким образом, при аннигиляции и «рождении» пар, так же как и во всех процессах, выполняются законы сохранения энергии и массы.
Давайте проведем воображаемый опыт. Заключим какой-нибудь объем, где находятся различные частицы и ядра, в непрозрачную для любых частиц и излучений оболочку. Тогда, что бы ни происходило внутри этого объема, общая энергия и масса всего объема останутся неизменными. Любые частицы и гамма-кванты, испускаемые при ядерных реакциях, возбуждении и ионизации атомов, останутся в том же объеме. Будет ли происходить аннигиляция пар либо их «рождение», передаст ли фотон свою энергию электрону или электрон возбудит атом с последующим излучением кванта света — в любом процессе не будут исчезать ни масса, ни энергия. Вместе с тем масса всего объема определяет его общую энергию по закону Е=тс 2 .
Конечно, такой идеальной оболочки, непрозрачной для любых излучений, не существует, и при любом процессе, где выделяется энергия, часть этой энергии теряется, уходит из малого объема в пространство. Законы же сохранения массы и энергии всегда выполняются.
Ядерные реакции.В средние века алхимики пытались превращать одни вещества в другие. Больше всего их интересовало искусственное получение золота, сулившее несметные богатства. Сейчас нам понятна бесплодность таких попыток. Даже в наше время химик, обладающий несравненно большими знаниями и опытом, в прекрасно оборудованной лаборатории с помощью какого-либо химического процесса не может превратить атомы одного элемента в атомы другого.
Но в начале XX века мечту алхимиков осуществили физики. Они сумели превратить одни элементы в другие.
Впервые превращение одного элемента в другой было выполнено Резерфордом в 1919 году.
Еще значительно раньше физики научились регистрировать отдельные альфа-частицы, получаемые при радиоактивном распаде, на экране, покрытом сернистым цинком.
Посмотрите внимательно в темноте на светящийся циферблат ваших часов. Если вы поднесете его ближе к глазам или воспользуетесь увеличительной линзой, то увидите, что свечение циферблата перестанет быть ровным. То в одном, то в другом месте циферблата будут возникать быстрогаснущие отдельные вспышки. Эти вспышки появляются неожиданно и через самые различные промежутки времени. Состав, покрывающий стрелки и цифры на часах, обычно состоит из сернистого цинка, к которому примешано небольшое количество радиоактивного препарата. Отдельные вспышки, или, как их обычно называют, сцинтилляции, обусловлены взаимодействием излучаемых препаратом альфа-частиц с сернистым цинком.
Этим явлением сцинтилляции и воспользовался Резерфорд в своих исследованиях. Он поместил радиоактивный препарат (рис. 6) А в сосуде, наполненном газом, в таком месте, что альфа-частицы не могли достигнуть стенки сосуда, где был расположен экран В. Достаточно толстый слой исследуемого газа поглощал все альфа-частицы, и вспышек на экране не появлялось.

Однако при наполнении сосуда азотом на экране появились сцинтилляции. Это не могли быть альфа-частицы. При наполнении сосуда кислородом или углекислотой вспышки на экране исчезали. Совершенно ясно, что частицы, вызывающие сцинтилляции, могли быть получены только в результате взаимодействия (реакции) альфа-частиц и атомов азота.
Тщательные исследования показали, что в азоте действительно имела место ядерная реакция, которую можно записать так:
[5] Здесь цифры справа над названием элемента обозначают число частиц (протонов и нейтронов) в ядре. Сумма этих чисел в правой части формулы должна быть равна сумме чисел в левой части формулы..
Легкие частицы слабее поглощаются газом. Поэтому частицы, пробегающие путь почти в 30 сантиметров от радиоактивного препарата до экрана, могли быть только ядрами водорода — протонами.
Таким образом, было установлено, что при бомбардировке ядер азота альфа-частицами последние как бы застревают в ядрах. Но взамен альфа-частицы из ядра вылетает протон. Получающееся при этом новое ядро является ядром изотопа кислорода с массовым числом 17.
Интересно подсчитать уже известным нам методом, каков баланс энергии в этой реакции. Написав сумму масс ядер до реакции в левой части формулы и сумму масс ядер после реакции в правой части (14,0075+4,0040→17,0045+1,0081, или 18,0115→18,0126), видим, что сумма масс частиц до реакции меньше суммы масс, получившихся после реакции частиц, на 0,0011, то есть в этой реакции энергия не выделяется, а поглощается. В данном случае превращение элементов идет за счет энергии альфа-частиц, выбрасываемых ядрами радиоактивного препарата.
Таким образом, мы выяснили, что не при всякой ядерной реакции выделяется энергия. Так же как и в некоторых химических реакциях, значительное число ядерных превращений требует расхода энергии.
Ядро — жидкая капля.Итак, ядерные реакции можно осуществить путем бомбардировки ядер частицами. Такая частица, попав в ядро, останется в нем, удерживаемая большими ядерными силами. Но быстрая частица, попавшая в ядро, передаст свое движение всем ядерным частицам.
Закон сохранения энергии утверждает, что энергия влетевшей в ядро частицы не пропала. Она равномерно распределилась между всеми ядерными частицами. Это очень похоже на то, что происходит при нагревании жидкости. Действительно, мы знаем, что если через воду пропустить пар, то молекулы пара, сталкиваясь с молекулами холодной воды, будут передавать им свою энергию. Молекулы воды придут в более энергичное движение. Иными словами, температура воды, которая определяется скоростью движения молекул, повысится — вода нагреется.
Скорости движения частиц в ядре, так же как и скорости молекул жидкости, соответствуют определенной температуре. Но скорость ядерных частиц в десятки тысяч раз больше скорости молекул жидкости и газа при обычных температурах, и поэтому температура ядра колоссальна. Когда частица с энергией около 10 Мэв влетает в ядро, его температура достигает 10–15 миллиардов градусов. Такое ядро можно представить себе в виде сильно нагретой капли жидкой ядерной материи, способной испаряться.
Читать дальшеИнтервал:
Закладка: